У нас вы можете посмотреть бесплатно Simple Regression and Pearson's r (Chapter 8 Lecture 1) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Hi there, and welcome! This lecture series corresponds to my textbook, Applied Statistics: Business and Management Research. You can purchase the textbook at: https://www.amazon.com/Applied-Statis... Here is a full list of the lectures, all of which are free and open access on YouTube: Introduction to the Quantitative Research Process (Chapter 1 Lecture 1): • Introduction to the Quantitative Research ... Variables (Chapter 1 Lecture 2): • Variables (Chapter 1 Lecture 2) Survey Design, Administration, and Sampling (Chapter 1 Lecture 3): • Survey Design, Administration, and Samplin... Getting Started with IBM SPSS (Chapter 2 Lecture 1): • Getting Started with IBM SPSS (Chapter 2 L... Variable View, Data View, and the IBM SPSS Toolbar (Chapter 2 Lecture 2): • Variable View, Data View, and the IBM SPSS... Recoding and Transforming Variables in SPSS (Chapter 2 Lecture 3): • Recoding and Transforming Variables in SPS... Measures of Central Tendency: The Mean, Median, and Mode (Chapter 3 Lecture 1): • Measures of Central Tendency: The Mean, Me... Measures of Dispersion: The Standard Deviation and Range (Chapter 3 Lecture 2): • Measures of Dispersion: The Standard Devia... Frequency Distributions, Histograms, Skewness, and Kurtosis (Chapter 3 Lecture 3): • Frequency Distributions, Histograms, Skewn... The Normal Curve (Chapter 4 Lecture 1): • The Normal Curve (Chapter 4 Lecture 1) Z-scores, the Central Limit Theorem, and P-values (Chapter 4 Lecture 2): • Z-scores, the Central Limit Theorem, and P... Standard Errors, Confidence Intervals, Type I and Type II Error, and Data Normalization (Chapter 4 Lecture 3): • Standard Errors, Confidence Intervals, Typ... What is a t-test? (Chapter 5 Lecture 1): • What is a t-test? (Chapter 5 Lecture 1) Calculating and Interpreting an Independent Samples t-test (Chapter 5 Lecture 2): • Calculating and Interpreting an Independen... What is an Analysis of Variance (ANOVA)? (Chapter 6 Lecture 1): • What is an Analysis of Variance? (Chapter ... Calculating and Interpreting the Analysis of Variance (ANOVA) (Chapter 6 Lecture 2): • Calculating and Interpreting the Analysis ... The Chi-Square Test (Chapter 7 Lecture 1): • The Chi-Square Test (Chapter 7 Lecture 1) Calculating and Interpreting the Chi-Square Test (Chapter 7 Lecture 2): • Calculating and Interpreting the Chi-Squar... Simple Regression and Pearson’s r (Chapter 8 Lecture 1): • Simple Regression and Pearson's r (Chapter... Calculating and Interpreting b and Pearson’s r (Chapter 8 Lecture 2): • Calculating and Interpreting b and Pearson... Multiple Regression (Part 1) (Chapter 9 Lecture 1): • Multiple Regression (Part 1) (Chapter 9 Le... Multiple Regression (Part 2) (Chapter 9 Lecture 2): • Multiple Regression (Part 2) (Chapter 9 Le... Multiple Regression (Part 3) (Chapter 9 Lecture 3): • Multiple Regression (Part 3) (Chapter 9 Le... Introduction to Logistic Regression (Chapter 10 Lecture 1): • Introduction to Logistic Regression (Chapt... Probabilities vs. Odds (Chapter 10 Lecture 2): • Probabilities vs. Odds (Chapter 10 Lecture 2) Interpreting Logistic Regression (Chapter 10 Lecture 3): • Interpreting Logistic Regression (Chapter ... Introduction to Factor Analysis (Chapter 11 Lecture 1): • Introduction to Factor Analysis (Chapter 1... Exploratory and Confirmatory Factor Analyses (Chapter 11 Lecture 2): • Exploratory and Confirmatory Factor Analys... Introduction to Structural Equation Modeling (Chapter 12 Lecture 1): • Introduction to Structural Equation Modeli... Structural Equation Modeling in Practice (Chapter 12 Lecture 2): • Structural Equation Modeling in Practice (... I hope you enjoy this lecture series! Professor Andrew R. Timming