У нас вы можете посмотреть бесплатно SketchBoost: быстрый бустинг для multiclass/multilabel классификации и multitask регрессии или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Докладчик: Антон Вахрушев (Sber AI Lab) Градиентный бустинг — один из самых эффективных инструментов для решения задач машинного обучения на табличных данных. Однако в задачах, когда требуется прогнозировать сразу несколько выходов, таких как multiclass/multilabel классификация и multitask регрессия, построение бустинга на деревьях требует существенных вычислительных затрат и может занимать неприемлемо много времени. Мы придумали практичный метод сжатия информации, который применяется на каждой итерации бустинга, а так же реализовали его на базе нашей библиотеки py-boost, которая доступна в opensource. В ходе нашего доклада мы расскажем, как можно добиться значительного ускорения времени обучения модели (в десятки раз) без каких-либо потерь в качестве. Статья: https://arxiv.org/abs/2211.12858 Запись чата: https://drive.google.com/file/d/16amB...