У нас вы можете посмотреть бесплатно 3 Popular Ways for Hyperparameter Tuning with Random Forest или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video we will cover 3 different methods for Hyperparameter tuning with a Random Forest Classifier. These will include Grid Search, Randomized Search, and Bayesian Search. After introducing these concepts, we'll work through an example on a toy dataset in Python, and compare the results from these different methods. The break-down of this video is as follows: Introduction 00:00 What is Hyperparameter Tuning? 00:42 Random Forest Hyperparameters 04:43 Jupyter Notebook Setup 07:05 Grid Search Python Example 09:51 Randomized Search Python Example 12:50 Bayesian Search Python Example 14:54 Conclusions 19:13 The best way to keep up-to-date with my video/blog content is to sign up for my monthly Newsletter! Please visit: https://insidelearningmachines.com/ne... to register. The notebook presented here can be found at: https://github.com/insidelearningmach... This video is based off of an article on my blog. You can find that blog article here: https://insidelearningmachines.com/hy... My article describing the Random Forest algorithm can be found here: https://insidelearningmachines.com/bu... The homepage of my blog is: https://insidelearningmachines.com Other social media includes: Twitter: / inside_machines Facebook: / inside-learning-machines-112215488183517 #machinelearning #datascience #classification #ensembles #randomforest #insidelearningmachines