У нас вы можете посмотреть бесплатно Boris Pioline : A string theorist view point on the genus-two Kawazumi-Zhang invariant или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: Chapter markers and keywords to watch the parts of your choice in the video Videos enriched with abstracts, bibliographies, Mathematics Subject Classification Multi-criteria search by author, title, tags, mathematical area The genus-two Kawazumi-Zhang (KZ) invariant is a real-analytic modular function on the Siegel upper half-plane of degree two, which plays an important role in arithmetic geometry. In String theory, it appears as part of the integrand in two-loop four-graviton scattering amplitudes. With hindsight from String theory, I will show that the KZ invariant can be obtained as a generalized Borcherds lift from a weak Jacobi form of index 1 and weight 2. This implies that the KZ invariant is an eigenmode of the quadratic and quartic Casimir operators, and gives access to the full asymptotic expansion in all possible degeneration limits. It also reveals a mock-type holomorphic Siegel modular form underlying the KZ invariant. String theory amplitudes involves modular integrals of the KZ invariant (times lattice partition functions) on the Siegel upper half-plane, which provide new examples of automorphic objects on orthogonal Grassmannians, beyond the usual Langlands-Eisenstein series. Note: this talk is based on the preprint "A Theta lift representation for the Kawazumi-Zhang and Faltings invariants of genus-two Riemann surfaces" available on arXiv:1504.04182. Following up on a question asked during the talk (which was answered very poorly), the author obtained shortly after a proof of the conjecture stated in this preprint and during the talk. The proof is available in the revised version arXiv:1504.04182v2. Recording during the thematic meeting: ''Automorphic forms: advances and applications'' the May 27, 2015 at the Centre International de Rencontres Mathématiques (Marseille, France) Filmmmaker: Guillaume Hennenfent