У нас вы можете посмотреть бесплатно LLMs on the Edge: The Future of On-Device Intelligence - DevConf.US 2025 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Speaker(s): Rakesh Musalay In many secure or industrial environments — like factories, labs, or embedded automotive systems — machines run in air-gapped or low-connectivity conditions. When systems fail, engineers often rely on scattered manuals or vendor documentation, which slows recovery. What if you could drop in a self-contained AI assistant that works offline — right at the edge? This lightning talk shows how to run a multimodal, agentic pipeline—Vision LM → RAG → LLM—entirely on-device using Podman containers on RHEL Edge with GPU CDI on an NVIDIA Jetson Orin Nano. We’ll contrast cloud vs edge constraints (RAM/power) and share a container-native architecture that delivers low latency, privacy, and reproducibility. A short demo (pre-recorded) illustrates a camera-to-answer workflow with real device metrics (tokens/sec, first-token latency). Attendees leave with a practical blueprint and ops tips for shipping rootless, reproducible, air-gapped AI stacks using Ramalama for local LLM serving. --- Full schedule, including slides and other resources: https://pretalx.devconf.info/devconf-...