У нас вы можете посмотреть бесплатно Agent Instructor: A VS Code Extension for Declarative Agents - Episode 42 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Agent Instructor: A VS Code Extension for Declarative Agents Building effective declarative agents in Microsoft Teams often requires writing complex instruction sets that can be cumbersome to create and refine. Agent Instructor is a new VS Code extension that streamlines this process through AI-assisted instruction generation and analysis. The extension offers two primary capabilities. First, it can generate comprehensive instruction sets for your declarative agent based on a simple description of its purpose. When demonstrated in the video, a brief description of "TaskBuddy" (an agent for managing to-do and planner tasks) produced a detailed 55-line instruction file in seconds. Second, it analyzes existing instruction files, providing a clarity score and identifying ambiguous phrases with specific improvement suggestions that can be applied with a single click. Using Agent Instructor is straightforward - install it from the VS Code marketplace, configure your API key (currently supporting Azure OpenAI or OpenAI), and access its features through the command palette. The extension works with instruction.txt files that Teams Toolkit generates when scaffolding a new declarative agent. Future development plans include supporting local LLM models through Ollama (eliminating API costs), enabling markdown files for better formatting, adding customizable system prompts, and potentially creating a library of reusable instruction templates. This tool significantly accelerates the development of well-structured, clear agent instructions, allowing developers to focus on agent functionality rather than instruction formatting and clarity.