У нас вы можете посмотреть бесплатно Nikolas Nüsken - On the Geometry of Stein Variational Gradient Descent или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Bayesian inference problems require sampling or approximating high-dimensional probability distributions. The focus of this talk is on the recently introduced Stein variational gradient descent methodology, a class of algorithms that rely on iterated steepest descent steps with respect to a reproducing kernel Hilbert space norm. This construction leads to interacting particle systems, the mean-field limit of which is a gradient flow on the space of probability distributions equipped with a certain geometrical structure. We leverage this viewpoint as well as connections to the theory of large deviations to shed some light on the convergence properties of the algorithm, in particular addressing the problem of choosing a suitable positive definite kernel function. Time permitting the talk will also address recent results concerning connections between interacting particle schemes and inverse problems. This is joint work with A. Duncan (Imperial College London), L. Szpruch (University of Edinburgh) and M. Renger (Weierstrass Institute Berlin).