У нас вы можете посмотреть бесплатно Memryx MX3 - M.2 AI Accelerator for Edge AI (Full Setup & Review) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Timestamps: 00:00 - Intro 02:00 - Unboxing 02:35 - Assembly 05:30 - Use Case 06:06 - Installing in PC 07:35 - Pre-Setup 12:06 - SDK Install 15:30 - Driver Install 19:59 - Testing Accelerator 23:49 - Additional Docs 26:41 - Example Pre-Reqs 29:00 - GitHub Overview 31:08 - Running Examples 35:30 - Object Detection Demo 40:43 - Other Examples 42:30 - Satellite Image Bounding Demo 46:34 - Speech Emotion Demo 53:18 - Vision Game Demo 1:00:57 - Closing Thoughts In this video we take an in-depth look at the Memryx MX3 M.2-based AI accelerator designed for edge AI applications. We take a full hands-on look at the MX3, covering everything from unboxing to installation, driver setup, and real-world AI testing to see how well it performs. We start by unboxing the MX3, assembling it, and installing it directly into an M.2 slot on a desktop machine—something that sets it apart from traditional AI accelerators. After installation, we walk through the software setup, including pre-setup steps, SDK installation, and driver configuration to ensure everything runs smoothly. Once the setup is complete, we put the MX3 to the test with a range of AI applications, including object detection in images, bounding box detection on satellite images, speech emotion recognition, and a vision-based AI-powered game. These tests give us a clearer picture of how well the MX3 performs in real-world AI workloads. This comprehensive guide covers everything you need to know about the MX3, from hardware installation to practical AI performance testing, making it an exciting option for edge AI enthusiasts and developers looking for efficient, low-power AI acceleration.