• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

PhD Defense - Probabilistic Ontology Representation and Modeling Methodology скачать в хорошем качестве

PhD Defense - Probabilistic Ontology Representation and Modeling Methodology 14 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
PhD Defense - Probabilistic Ontology Representation and Modeling Methodology
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: PhD Defense - Probabilistic Ontology Representation and Modeling Methodology в качестве 4k

У нас вы можете посмотреть бесплатно PhD Defense - Probabilistic Ontology Representation and Modeling Methodology или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон PhD Defense - Probabilistic Ontology Representation and Modeling Methodology в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



PhD Defense - Probabilistic Ontology Representation and Modeling Methodology

Dissertation: http://digilib.gmu.edu/handle/1920/6616 Slides: http://pt.slideshare.net/rommelnc/pro... Oral Defense of Doctoral Dissertation Volgenau School of Engineering, George Mason University Rommel Novaes Carvalho Bachelor of Science, University of Brasília, Brazil, 2003 Master of Science, University of Brasília, Brazil, 2008 Probabilistic Ontology: Representation and Modeling Methodology Tuesday, June 28, 2011, 2:00pm -- 4:00pm Nguyen Engineering Building, Room 4705 Committee Kathryn Laskey, Chair Paulo Costa Kuo-Chu Chang David Schum Larry Kerschberg Fabio Cozman Abstract The past few years have witnessed an increasingly mature body of research on the Semantic Web (SW), with new standards being developed and more complex problems being addressed. As complexity increases in SW applications, so does the need for principled means to cope with uncertainty in SW applications. Several approaches addressing uncertainty representation and reasoning in the SW have emerged. Among these is Probabilistic Web Ontology Language (PR-OWL), which provides Web Ontology Language (OWL) constructs for representing Multi-Entity Bayesian Network (MEBN) theories. However, there are several important ways in which the initial version PR-OWL 1.0 fails to achieve full compatibility with OWL. Furthermore, although there is an emerging literature on ontology engineering, little guidance is available on the construction of probabilistic ontologies. This research proposes a new syntax and semantics, defined as PR-OWL 2.0, which improves compatibility between PR-OWL and OWL in two important respects. First, PR-OWL 2.0 follows the approach suggested by Poole et al. to formalizing the association between random variables from probabilistic theories with the individuals, classes and properties from ontological languages such as OWL. Second, PR-OWL 2.0 allows values of random variables to range over OWL datatypes. To address the lack of support for probabilistic ontology engineering, this research describes a new methodology for modeling probabilistic ontologies called Uncertainty Modeling Process for Semantic Technologies (UMP-ST). To better explain the methodology and to verify that it can be applied to different scenarios, this dissertation presents step-by-step constructions of two different probabilistic ontologies. One is used for identifying frauds in public procurements in Brazil and the other is used for identifying terrorist threats in the maritime domain. Both use cases demonstrate the advantages of PR-OWL 2.0 over its predecessor.

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5