У нас вы можете посмотреть бесплатно RAG Explained For Beginners или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🧪Try RAG Hands-On Labs for Free - https://kode.wiki/4oANO8s Learn how RAG (Retrieval Augmented Generation) solves the challenge of connecting AI assistants like ChatGPT to massive document repositories! In this comprehensive video, we'll show you exactly how to make AI search, read, and understand large company documents using vector embeddings and semantic search. Ready to build your own RAG system? Access our FREE interactive labs where you can experiment with real RAG implementations, test different chunking strategies, and see vector databases in action! 🧪Try RAG Hands-On Labs for Free - https://kode.wiki/4oANO8s 📚 What You'll Learn: • What is RAG and why it's revolutionary for AI document search • How vector embeddings transform documents into searchable data • The 3-step RAG process: Retrieval, Augmented, Generation • Semantic search vs traditional search methods • Critical chunking strategies for different document types • RAG Demo 🚀Explore Our Top Courses & Special Offers: https://kode.wiki/3CzuOnc ⏱️ Timestamps: 00:00 - Introduction to RAG 00:24 - Why Traditional Search Methods Don't Work 00:55 - The RAG Method Explained 01:54 - Step 1: Retrieval Process 02:25 - Step 2: Augmentation Explained 03:15 - Step 3: Generation Process 03:54 - Strategies for RAG Calibration 05:01 - Practical Lab Demo Introduction 05:27 - Demo - Set up Development Environment 06:10 - Demo - Initialize Vector Database 06:29 - Demo - Chunking Strategy and Embedding 07:19 - Demo - Feed AI Brain 07:50 - Demo - Semantic Search 08:16 - Demo - Launch a Simple Web Interface 09:43 - Conclusion & Free Lab Access 🚨Check out our learning paths at KodeKloud to get started: https://kode.wiki/41NLyks #RAG #RetrievalAugmentedGeneration #AI #VectorDatabase #VectorEmbeddings #ArtificialIntelligence #DocumentChunking #EmbeddingModels #AIRetrieval ##KodeKloud