У нас вы можете посмотреть бесплатно Synthetic Data Without the Hype: Where It Works and Where It Breaks или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Synthetic data is being pitched as the end of slow, expensive market research. And in some cases, it really can help: it’s useful for testing systems safely, generating options quickly, and reducing the cost of experimentation, especially for small teams. But “synthetic data” is used to describe two very different things. One is synthetic datasets (fake-but-realistic data for testing and privacy). The other is synthetic respondents (AI-simulated people used for market research), and confusing the two can be a major issue. In this episode, we break down where synthetic data works, where it breaks, and the guardrails founders should use so it accelerates learning instead of replacing it. Key Topics Covered What synthetic data is: artificially generated data designed to mimic real-world patterns Synthetic datasets vs synthetic respondents — and why confusing them leads to bad decisions Directional insight vs reliable truth in AI-assisted research Bias in / bias out, and how synthetic data can amplify existing assumptions Privacy tradeoffs: when synthetic data is privacy-enhancing vs when it still carries risk Real-world use cases discussed: Testing and simulation in autonomous systems and rare edge cases Finance and fraud-pattern modeling under data restrictions Marketing measurement challenges (cookie loss, attribution gaps) Founder use cases: pricing ranges, messaging tests, early segmentation, objection handling Timestamps: 00:00 Introduction and Personal Updates 04:53 What synthetic data actually is (and why it’s confusing) 09:07 Understanding Synthetic Data Definitions: datasets vs synthetic respondent 12:28 Why synthetic data is everywhere now: privacy, speed,and survey fatigue 15:03 Real World Use Cases: Where synthetic data already works outside of marketing 17:47 Synthetic Respondents: Opportunities and Challenges 18:14 How synthetic respondents simulate customer opinions 22:05 The Mark Ritson argument and the context you shouldn’t ignore 23:16 Downsides to Synthetic Data: bias, false confidence, and missing the signal 29:45 Guardrails for using synthetic data 32:04 Practical founder use cases: pricing, messaging, and segmentation 34:47 Cultural pushback against AI: San Diego Comic Con & Bandcamp 38:25 AI gone wrong: the Kafkaesque spelling fail 41:40 Wrapping up 📲 *FOLLOW EARLY ADOPTR* Email: hello@earlyadoptr.ai Instagram: / early_adoptr TikTok: / early_adoptr LinkedIn: / early-adoptr Resources: https://linktr.ee/early_adoptr