У нас вы можете посмотреть бесплатно Patient-Specific Intervention Simulation Using Tubular Structure Networks and Hybrid Distance Fields или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Objective: Percutaneous coronary intervention represents one of the most critical procedures in interventional cardiology. Traditional training methods face limitations including ethical concerns, variable case availability, and radiation exposure risks. This study develops a high-fidelity coronary intervention simulation system based on digital twin technology to balance anatomical accuracy, physical realism, and computational efficiency. Methods: Building upon our previous patient-specific digital-physical twin framework, we introduce three key innovations: (1) a Tubular Structure Network (TSN) representation that models vessels as interconnected geometric primitives with spheres connected by truncated cones, preserving topological and geometric characteristics of vascular structures; (2) a hybrid distance field algorithm combining precomputed signed distance fields with precise geometric calculations for sub-millimeter real-time collision detection; and (3) integration of Cosserat rod theory within a position-based dynamics framework applied to the TSN model for realistic guidewire-vessel interactions. Results: Experimental validation demonstrates sub-millimeter accuracy throughout the cardiac cycle while maintaining real-time performance. The TSN representation effectively constructs complete branching vessel representations from centerline data, accurately capturing radius variations and branching relationships. The hybrid distance field algorithm optimizes computational resources by focusing precision where needed. The Cosserat rod-based simulation accurately captures guidewire mechanical behavior. Conclusion: This integrated approach advances coronary intervention simulation by providing a comprehensive platform balancing anatomical accuracy, physical realism, and computational efficiency. The system has potential to significantly enhance training effectiveness for interventional cardiologists while improving procedural outcomes and patient safety.