У нас вы можете посмотреть бесплатно Advance RAG Course: Master All RAG Retrieval & Reranking Techniques in One Video💡! или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
RAG systems combine the power of retrieval mechanisms with generative models to create more informed and contextually accurate responses. In this Advanced RAG Tutorial, we cover *every retriever and reranker method* used in modern RAG pipelines: 🔸 Vector Store (Chroma, Weviate, Faiss) 🔸 BM25 / Sparse Retrieval 🔸 Self-Query Retriever, Parent Doc Retriever, Sentence Window 🔸 Reranking Models (Cohere, BAAI, ReRanker, CrossEncoder) If you're building a custom chatbot, QA system, or AI assistant—this is your one-stop guide! 💥 📌 Best for: Developers, ML Engineers, LLM enthusiasts Don't miss out; learn with me! 📢 Like 👍 | Comment 💬 | Subscribe 🔔 for more in-depth LLM content! #llm #embedding #ai #futureai #generativeai #genai #textgeneration #ragapp #langchain #programminglogic #python #chatbot #openai #gpt #langchainj #rag #reranking #cohereai #bm25 #crossencoder #transformers #multiretriever #ragfusion #advancerag #llamaindex #RAGTutorial #AdvanceRAG #Retriever #Reranker #LangChain #LLMApplications #RAGStack #RAGPipeline #VectorSearch #semanticsearch #CohereReranker #MMR #HybridSearch Complete GenAI Material: https://github.com/sunnysavita10/Gene... Connect with me on Social Media- LinkedIn : / sunny-savita One to One Call: https://topmate.io/sunny_savita10 GitHub : https://github.com/sunnysavita10 Telegram : https://t.me/aimldlds 00:00:00 Introduction Overview of the course, prerequisites, and what to expect. 00:05:00 RAG Fundamentals Recap What is RAG? Basic RAG architecture and workflow. 00:15:00 Data Preparation Loading and chunking documents. Preprocessing and cleaning text. 00:30:00 Sparse Retrieval Techniques Keyword search (TF-IDF, BM25). Implementing basic retrievers. 01:00:00 Dense Retrieval Techniques Embeddings and vector search. Using open-source models for dense retrieval. 01:30:00 Hybrid Retrieval Combining sparse and dense retrievers. Weighted ensemble techniques. 02:00:00 Advanced Retriever Types Self-query retriever, Contextual compression retriever, Parent document retriever, Sentence window retriever, Auto-merging retriever. 03:00:00 Reranking Techniques Why reranking is important. Using cross-encoders and other models for reranking. 03:45:00 Integrating Retrieval with LLMs Passing retrieved results to LLMs. Prompt engineering for RAG. 04:30:00 Real-World Applications Case studies and practical projects. Building a RAG-powered chatbot. 05:30:00 Scaling and Optimization Performance tips. Using GPUs and quantized models. 06:15:00 Open-Source Tools and Libraries LangChain, ChromaDB, and other ecosystem tools. Setting up and configuring retrieval pipelines. 07:00:00 Troubleshooting and FAQs Common issues and their solutions. Best practices. 07:45:00 Final Project Walkthrough End-to-end implementation. Review and wrap-up. 08:00:00 Conclusion and Next Steps Where to go from here. Further resources and advanced topics.