У нас вы можете посмотреть бесплатно Introduction to Positive Unlabeled (PU) Learning | DataHour | Analytics Vidhya или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Positive-Unlabeled (PU) learning is a Machine Learning approach to Binary Classification where the training data comprises of positive instances as well as an additional unlabeled data that might contain positive and negative instances in unknown proportions. Positive-unlabeled learning methods aim to incorporate this unique scenario into the learning process, in a way that improves generalization of the learned representations of the positive class, when compared to simply treating all unlabeled instances as purely negative instances, or alternatively discarding them and training a one-class classifier over only the positive samples. In this DataHour, Chandra will explain all about Positive Unlabeled learning including its basics, use and practical applications. Sections 00:00:00 Introduction 00:02:20 Machine Learning: Quick Brush-up 00:04:48 What is Positive Unlabeled Learning 00:06:69 Different Approaches to PU Learning 00:10:52 Hands On PU Learning 00:39:44 Some Real-World Application 00:47:46 Brief Q&A Session Stay on top of your industry by interacting with us on our social channels: Follow us on Instagram: / analytics_vidhya Like us on Facebook: / analyticsvidhya Follow us on Twitter: / analyticsvidhya Follow us on LinkedIn: / analytics-vidhya