У нас вы можете посмотреть бесплатно LECTURE или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
TIME STAMPS Q6a: 00:01:33 Q6b: 00:09:32 Q7a: 00:15:25 Q7b: 00:18:34 Q8a: 00:20:59 Q8b: 00:26:59 Q9a : 00:36:48 Q9b: 00:40:26 Q10 :00:41:51 LINK OF PLAYLIST UNIT 9 CONICS-2 SECOND YEAR MATH • UNIT 9 (CONICS 2 )SECOND YEAR MATH LINK OF PLAYLIST UNIT 8 CONICS-1 SECOND YEAR MATH • UNIT 8 CONICS-1 (SECOND YEAR MATH) LINK OF PLAYLIST OF UNIT 7 • UNIT 7 12TH MATH PLANE ANALYTICAL GEOMET... LINK OF PLAYLIST UNIT 10 DIFFERENTIAL EQUATIONS 2ND YEAR MATH • UNIT 10 DIFFERENTIAL EQUATIONS 2ND YEAR MATH LINK OF PLAYLIST OF UNIT 6 INTEGRATION SECOND YEAR MATH • SECOND YEAR MATH UNIT 6(INTEGRATION) LINK OF PLAYLIST OF SECOND YEAR MATH • SECOND YEAR MATH (2022) LINK OF PLAYLIST OF UNIT 3 SECOND YEAR MATH KPK BOARDS LINK OF PLAYLIST OF UNIT 2 SECOND YEAR MATH KPK BOARDS • UNIT 2 SECOND YEAR MATH(2022) FUNCTIONS AN... LINK OF PLAYLIST OF MCQS SECOND YEAR MATH LINK OF PLAYLIST OF MCQS SECOND YEAR MATH https://youtube.com/playlist?list= PL8nFkAarFvdQbMAIzikawQji2bfpW0ePVs in this lecture 111 part 2 we have solved question one and two. For proof of parabola equation and different terminologies are explained in lecture 110 exercise 9.1 part 1 share this channel with your second year students press the bell icon (notification button) for new videos LECTURE #113 EXERCISE 9.1(PART 4)(Q6 TO Q10) UNIT 9 CONICS-2 SECOND YEAR MATH KPK BOARDS. #2ndyearmath #parabola #parábolas Q6. in each case find the points of intersection in between the line and the parabola: a. y²+3x=-8 ,x-y+2=0 b. x²=2y ,x-y-2=0 Q7. for what value of C, a. the line x-y+c=0 will touch the parabola y²= 9x ? b.the line x-y+c=0 will touch the parabola x²=2/3y ? Q8. in each case find the tangent equation and normal equation a. At a point (3,6) to parabola y²=12x b. At a point (1/2,-1/3) to parabola x²= -3y/4 Q9. and the tangent equation a. to parabola y²=x which makes an angle of 135° with the x-axis. b. to parabola x²=y which makes an angle of 60° with the x-axis. Q10. find the equation of the parabolic portion of the archway, if parabolic archway has the dimension shown in the figure.