У нас вы можете посмотреть бесплатно Computing Futures Symposium: Future of Computing Innovation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
What's next for computer science? Dive into a dynamic discussion from the Computing Futures Symposium, expertly moderated by Mark Hill (University of Wisconsin – Madison). This panel of leading minds – Margaret Martonosi (Princeton University), Brent Hecht (Microsoft Research), Charles Leiserson (MIT), and Rajmohan Rajaraman (Northeastern University) – tackles the most pressing issues in the field today. From the "Wild West" of quantum computing to the societal impact of AI and the critical need for software performance optimization, discover key insights and perspectives: Margaret Martonosi emphasizes the groundbreaking opportunities for computer science in quantum computing, particularly in areas like instruction set architectures and error correction. She highlights the crucial interplay between classical and quantum systems. Brent Hecht shines a light on AI's existential data crisis and the urgent need to steer AI innovation towards human augmentation. He discusses the importance of data property rights and the role of academia and government in shaping a robust AI economy. Charles Leiserson declares "Moore's Law dead" and makes a compelling case for renewed investment in software performance engineering. He explains why optimizing software, not just hardware, is the key to future performance gains and warns of national security implications. Rajmohan Rajaraman champions the critical need for rigor, proofs, and understanding in new computing artifacts, especially as AI systems become central to scientific discovery. He explores opportunities at the intersection of formal methods and generative AI for creating trustworthy systems. The panelists also explore shared challenges, the "why now" behind these critical issues, and the vital need for collaboration across disciplines.