У нас вы можете посмотреть бесплатно LLM Understanding: 9. Charles YANG "Learning, Satisficing, and Decision Making" или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learning, Satisficing, and Decision Making Charles Yang Linguistics, University of Pennsylvania ISC Summer School on Large Language Models: Science and Stakes, June 3-14, 2024 Wed, June 5, 9am-10:30am EDT Abstract: In machine learning, the learner is assumed to be rational, seeking the highest probability, lowest cost, account of the data. This may not be achievable without a tremendous amount of data. Meanwhile, the problem of overfitting remains a formidable challenge: the best hypothesis from one set of data may not generalize well to another. Herbert Simon observed that human learning and decision-making often do not strive for optimal solutions but merely solutions that are good enough (“satisficing”). Language learning provides the most compelling demonstration. Almost all linguistic rules have exceptions but are nevertheless good enough to generalize. A “Tolerance Principle” of learning by satisficing provides a precise and parameter-free measure of what counts as good enough for generalization. In addition to support from empirical linguistic studies, experimental research with infants (e.g., Shi & Emond 2023) suggests that the Tolerance Principle is a domain-general mechanism, and can be applied to social learning and cultural conventionalization, providing a more accurate account of behavioral data than rational decision processes. Charles Yang is Professor of Linguistics and Computer Science and director of the cognitive science program at University of Pennsylvania. His research concerns language and cognitive development from a computational perspective. The Price of Linguistic Productivity (2016) won the Leonard Bloomfield Award from the LSA. Martínez, H. J. V., Heuser, A. L., Yang, C., & Kodner, J. (2023). Evaluating Neural Language Models as Cognitive Models of Language Acquisition. arXiv preprint arXiv:2310.20093. Shi, R., & Emond, E. (2023). The threshold of rule productivity in infants. Frontiers in Psychology, 14, 1251124. Yang, C. (2016). The price of linguistic productivity. MIT Press. Yang, C., Crain, S., Berwick, R. C., Chomsky, N., & Bolhuis, J. J. (2017). The growth of language: Universal Grammar, experience, and principles of computation. Neuroscience & Biobehavioral Reviews, 81, 103-119.