У нас вы можете посмотреть бесплатно Prediction without Preclusion – Berk Ustun (UC San Diego) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this episode of the CLE Vlog & Podcast Series, Prof. Berk Ustun (University of California San Diego) discusses his paper "Prediction without Preclusion: Recourse Verification with Reachable Sets" with Benjamin Kohler (ETH Zurich). In their work, Berk Ustun and his co-authors investigate how machine learning models in high-stakes settings, such as lending and hiring, assign "fixed" predictions that individuals cannot change regardless of their actions. They introduce a formal procedure called "recourse verification" to certify whether a model allows for responsiveness or precludes access. In addition, they develop an auditing tool for practitioners to flag models that effectively block access to certain outcomes before they are deployed – a crucial step to promote fairness and transparency in machine-led decision making. Paper Reference: Berk Ustun – University of California, San Diego Avni Kothari – University of California, San Diego Bogdan Kulynych – Lausanne University Hospital Tsui-Wei Weng – Halıcıoğlu Data Science Institute Prediction without Preclusion: Recourse Verification with Reachable Sets https://arxiv.org/abs/2308.12820 Audio Credits for Trailer: AllttA by AllttA • AllttA (@20syl & @mrjmedeiros ) - AllttA (...