У нас вы можете посмотреть бесплатно Environment Variables Podcast | Ep 116 LLM Energy Transparency with Scott Chamberlin или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this episode of Environment Variables , host Chris Adams welcomes Scott Chamberlin, co-founder of Neuralwatt and ex-Microsoft Software Engineer, to discuss energy transparency in large language models (LLMs). They explore the challenges of measuring AI emissions, the importance of data center transparency, and projects that work to enable flexible, carbon-aware use of AI. Scott shares insights into the current state of LLM energy reporting, the complexities of benchmarking across vendors, and how collaborative efforts can help create shared metrics to guide responsible AI development. Learn more about our people: Chris Adams: [LinkedIn]( / mrchrisadams ) | [GitHub](https://github.com/mrchrisadams) | [Website](https://www.thegreenwebfoundation.org/) Scott Chamberlin: [LinkedIn]( / scott-t-chamberlin ) | [Website](https://www.neuralwatt.com/) Find out more about the GSF: [The Green Software Foundation Website](https://greensoftware.foundation/) Sign up to the [Green Software Foundation Newsletter](https://greensoftware.foundation/) News: [Set a carbon fee in Sustainability Manager](https://learn.microsoft.com/en-us/ind...) | Microsoft [26:45] [Making an Impact with Microsoft's Carbon Fee](https://download.microsoft.com/downlo...) | Microsoft Report [28:40] [AI Training Load Fluctuations at Gigawatt-scale – Risk of Power Grid Blackout? – SemiAnalysis](https://semianalysis.com/2025/06/25/a...) [49:12] Resources: [Chris’s question on LinkedIn about understanding the energy usage from personal use of Generative AI tools]( / urn:li:activity:7343651522905329665 ) [01:56] [Neuralwatt Demo on YouTube]( • Neuralwatt Demo ) [02:04] [Charting the path towards sustainable AI with Azure Machine Learning resource metrics | Will Alpine](https://techcommunity.microsoft.com/b...) [24:53] [NVApi - Nvidia GPU Monitoring API | smcleod.net](https://smcleod.net/2024/05/nvapi-nvi...) [29:44] [Azure Machine Learning monitoring data reference](https://learn.microsoft.com/en-us/azu...) | Microsoft [Environment Variables Episode 63 - Greening Serverless with Kate Goldenring](https://podcasts.castplus.fm/e/vnwkr1...) [31:18] [NVIDIA to Acquire GPU Orchestration Software Provider Run:ai](https://blogs.nvidia.com/blog/runai/) [33:20] [Run.AI](http://run.ai) [NVIDIA Run:ai Documentation](https://run-ai-docs.nvidia.com/) [GitHub - huggingface/AIEnergyScore: AI Energy Score: Initiative to establish comparable energy efficiency ratings for AI models.](https://github.com/huggingface/AIEner...) [56:20] [Carbon accounting in the Cloud: a methodology for allocating emissions across data center users](https://arxiv.org/html/2406.09645v1) If you enjoyed this episode then please either: Follow, rate, and review on [Apple Podcasts](https://podcasts.apple.com/us/podcast...) Follow and rate on [Spotify](https://open.spotify.com/episode/0C4N...) Watch our videos on The Green Software Foundation [YouTube Channel!]( / @greensoftwarefoundation3662 ) Connect with us on [Twitter](https://twitter.com/gsfcommunity?ref_..., [Github](https://github.com/Green-Software-Fou...) and [LinkedIn]( / green-software-foundation !