• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science скачать в хорошем качестве

What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science Трансляция закончилась 3 недели назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science в качестве 4k

У нас вы можете посмотреть бесплатно What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science

What Is a Random Variable? Why It Is Required in Statistics | CS1 Actuarial Science TIMESTAMPS 00:00 Why students struggle with basic probability terms 01:10 Why probability foundations decide career outcomes 02:05 Fear, risk, and real-life probability examples 03:10 Why probability questions matter in real decisions 04:05 Why random variable exists at all 05:10 Sample space and event-based probability revision 06:20 From events to probability distribution 07:40 Two-coin example. Number of heads 09:10 Why event-naming fails for large experiments 10:30 Why tossing 5000 coins breaks old methods 11:40 Birth of random variable as a single source 13:10 Difference between event names and numeric outcomes 14:30 Random variable as source of randomness 15:40 Variable vs random variable explained 17:10 Discrete vs continuous intuition 18:30 Time, height, weight as continuous examples 20:10 Study-hours example. Certainty vs uncertainty 21:40 From uncertainty to probability numbers 23:10 Probability as numbers between 0 and 1 24:20 Discrete random variable definition 25:30 Probability mass function idea 26:50 Why pointwise probability works for discrete 28:10 Continuous randomness problem introduced 29:40 Interval mathematics vs point mathematics 31:10 Number-guessing example between 1 and 4 33:10 Why point guessing fails in continuous case 35:00 Interval-based probability intuition 36:40 Uniform assumption explained 38:10 Why intervals solve infinite outcomes 39:50 Probability density function motivation 41:30 Why point probability is zero in continuous case 43:10 Area under curve as probability 45:00 Integral equals total probability 46:30 Finding probability over an interval 48:10 Discrete vs continuous comparison 49:40 Dice example as discrete model 51:10 Checking validity of a probability model 52:40 Continuous example with exam completion time 54:30 How to check a valid density function 56:10 Computing probabilities using integration 58:00 Cumulative distribution function intuition 59:40 Why cumulative view matters in practice 01:01:20 Summary of random variable framework 01:03:00 What comes next in CS1 syllabus 01:04:30 Distributions roadmap and closing SUMMARY This lecture builds absolute clarity around probability foundations by answering one central question. Why random variables exist at all. You begin by seeing why many students fail not because of formulas, but because of weak intuition around uncertainty, probability, and distributions. Real-life risk examples show how probability changes behavior and decision-making. The session then revisits basic probability using sample space and events, exactly as taught earlier in school. This approach works for small problems but collapses when the experiment size grows. Tossing thousands of coins exposes the limits of event-naming methods. This failure motivates the random variable. A random variable acts as a single numeric source of randomness. All events become outcomes of this one source. This shift brings structure, scalability, and clarity. The difference between a mathematical variable and a random variable is explained using certainty versus uncertainty. Fixed plans create variables. Uncertain outcomes create random variables. Probability simply assigns numbers to uncertainty. Discrete and continuous randomness are then separated cleanly. Countable outcomes lead to discrete random variables. Uncountable outcomes force a shift to interval-based reasoning. The idea of point mathematics versus interval mathematics becomes the turning point. Discrete probability works pointwise. Continuous probability cannot. Point probabilities collapse to zero. Only intervals carry meaning. This leads naturally to probability mass functions for discrete cases and probability density functions for continuous cases. Density is introduced as a height, not a probability. Probability emerges only after integration, as area under the curve. You learn why total probability equals one in both settings. Summation in discrete models. Integration in continuous models. The role of cumulative distribution functions is explained using practical accumulation examples. Finally, simple exam-style checks are shown to verify whether a given function is a valid probability model. Both discrete and continuous examples are covered. The session closes by positioning this framework as the base of all statistical modeling. Every distribution, test, model, and actuarial application begins with a random variable. Once this structure is clear, advanced topics become easier and fear disappears. #Probability #RandomVariable #CS1 #Statistics #ActuarialScience #DAtaScience #ProbabilityDistribution #PMF #PDF #CDF #DiscreteRandomVariable #ContinuousRandomVariable #StatisticsFoundations #DataScienceBasics #AIFoundations #CFA #CA #FRA FINTECH

Comments
  • What Is Population in Statistics? Sample vs Population Explained from Basics CS1 Actuarial Science 2 недели назад
    What Is Population in Statistics? Sample vs Population Explained from Basics CS1 Actuarial Science
    Опубликовано: 2 недели назад
  • Doda - Pamiętnik (Official Video) 1 день назад
    Doda - Pamiętnik (Official Video)
    Опубликовано: 1 день назад
  • How to Choose the Right Distribution? Binomial vs Poisson vs Negative Binomial vs Hypergeometric Трансляция закончилась 2 недели назад
    How to Choose the Right Distribution? Binomial vs Poisson vs Negative Binomial vs Hypergeometric
    Опубликовано: Трансляция закончилась 2 недели назад
  • Trick to find Square root of a perfect square 14 минут назад
    Trick to find Square root of a perfect square
    Опубликовано: 14 минут назад
  • CS1-Actuarial Statistics
    CS1-Actuarial Statistics
    Опубликовано:
  • S1 Representation of Data. A levels Maths 9709. Sir Talha Sultan. Lec-7 12 дней назад
    S1 Representation of Data. A levels Maths 9709. Sir Talha Sultan. Lec-7
    Опубликовано: 12 дней назад
  • Why the Generator Matrix & Kolmogorov Equations Work Like Magic in Continuous-Time Markov Processes? Трансляция закончилась 2 недели назад
    Why the Generator Matrix & Kolmogorov Equations Work Like Magic in Continuous-Time Markov Processes?
    Опубликовано: Трансляция закончилась 2 недели назад
  • What is Markov Property ?What Is Stationarity? Why Static Probability Models Fail in the Real World Трансляция закончилась 1 месяц назад
    What is Markov Property ?What Is Stationarity? Why Static Probability Models Fail in the Real World
    Опубликовано: Трансляция закончилась 1 месяц назад
  • ATLÉTI SHOW! CZTERY DO PRZERWY, ZAGUBIONA BARCA PYTA KTÓRĘDY DO SZATNI! TO PARTIDO MIAŁO WSZYSTKO 19 часов назад
    ATLÉTI SHOW! CZTERY DO PRZERWY, ZAGUBIONA BARCA PYTA KTÓRĘDY DO SZATNI! TO PARTIDO MIAŁO WSZYSTKO
    Опубликовано: 19 часов назад
  • Если в мире ТАК МНОГО денег, то почему мы так бедно живем!? 2 часа назад
    Если в мире ТАК МНОГО денег, то почему мы так бедно живем!?
    Опубликовано: 2 часа назад
  • Moment Generating Function Explained Step by Step with Problems -MGF Class2! CS1 Actuarial Science 10 дней назад
    Moment Generating Function Explained Step by Step with Problems -MGF Class2! CS1 Actuarial Science
    Опубликовано: 10 дней назад
  • FULL MATCH | Honoka Hashimoto vs Shin Yubin | Round of 16 | Asian Cup 2026 6 дней назад
    FULL MATCH | Honoka Hashimoto vs Shin Yubin | Round of 16 | Asian Cup 2026
    Опубликовано: 6 дней назад
  • Understanding Chi-Square, t, Z and F Distributions with Simple Examples Трансляция закончилась 10 дней назад
    Understanding Chi-Square, t, Z and F Distributions with Simple Examples
    Опубликовано: Трансляция закончилась 10 дней назад
  • (Best Final) ATTU Cup 2026 - FINAL - Wang Chuqin vs Tomokazu Harimoto 5 дней назад
    (Best Final) ATTU Cup 2026 - FINAL - Wang Chuqin vs Tomokazu Harimoto
    Опубликовано: 5 дней назад
  • Jako CHIRURG ja NIGDY Nie Poleciłbym TYCH 5 OPERACJI Moim RODZICOM po 70! 4 часа назад
    Jako CHIRURG ja NIGDY Nie Poleciłbym TYCH 5 OPERACJI Moim RODZICOM po 70!
    Опубликовано: 4 часа назад
  • Trig identity example 33 минуты назад
    Trig identity example
    Опубликовано: 33 минуты назад
  • Pułapka SAFE 10 часов назад
    Pułapka SAFE
    Опубликовано: 10 часов назад
  • Gamma Distribution,Poisson Process,Exponential Distribution & Memoryless Property Explained Clearly Трансляция закончилась 2 недели назад
    Gamma Distribution,Poisson Process,Exponential Distribution & Memoryless Property Explained Clearly
    Опубликовано: Трансляция закончилась 2 недели назад
  • CM1A Unit Linked Profit Testing Explained Step by Step | Bid Offer Spread, Non Unit Fund 23 часа назад
    CM1A Unit Linked Profit Testing Explained Step by Step | Bid Offer Spread, Non Unit Fund
    Опубликовано: 23 часа назад
  • 22. Market Equilibrium 5 часов назад
    22. Market Equilibrium
    Опубликовано: 5 часов назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5