У нас вы можете посмотреть бесплатно Eval Engineering for AI Developers - Lesson 2 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learn Eval Engineering in this free, 5-part, hands-on course. 90% of AI agents don't make it successfully to production. The biggest reason is the AI engineers building these apps don't have a clear way of evaluating that these agents are doing what they should do, and using the results of this evaluation to fix them. In this course, you will learn all about evals for AI applications. You'll start with some out-of-the-box metrics and learn about evals, then move onto understanding observability for AI apps, analyzing failure states, defining custom metrics, then finally using these across your whole SDLC. This will be hands on, so be prepared to write some code, create some metrics, and do some homework! In this second lesson, you will Use observability to visualize the components of a typical multi-agent AI application Learn about the different components that make up these applications Apply some out-of-the-box metrics to start to get an understanding of how your application is working Prerequisites: A basic knowledge of Python - Access to an OpenAI API key - A free Galileo account (we will be using Galileo as the evals platform) Sign up for the upcoming lessons here: Lesson 3: https://luma.com/3k99shl1 Lesson 4: https://luma.com/x2ztpa4f Lesson 5: https://luma.com/esoi6izo