У нас вы можете посмотреть бесплатно Artificial microbial consortia to enhance ago biomass degradation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
𝐓𝐢𝐭𝐥𝐞 𝐨𝐟 𝐭𝐡𝐞 𝐚𝐫𝐭𝐢𝐜𝐥𝐞: Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation 𝐒𝐞𝐩𝐭𝐞𝐦𝐛𝐞𝐫 𝟐𝟎𝟐𝟑; 𝐕𝐨𝐥𝐮𝐦𝐞 𝟏𝟎; 𝐈𝐬𝐬𝐮𝐞 𝟑; 𝐏𝐚𝐠𝐞𝐬 𝟏𝟖𝟗𝟎-𝟏𝟗𝟎𝟎 𝐀𝐮𝐭𝐡𝐨𝐫𝐬: Vi N.H. Vu; Csilla Kohári-Farkas; Róbert Filep; Gábor Laszlovszky; My Thi Ban; Erika Bujna; Vijai Kumar Gupta; Quang D. Nguyen 𝐑𝐞𝐚𝐝 𝐭𝐡𝐞 𝐟𝐮𝐥𝐥 𝐩𝐚𝐩𝐞𝐫 𝐟𝐨𝐫 𝐟𝐫𝐞𝐞 𝐨𝐧 𝐣𝐨𝐮𝐫𝐧𝐚𝐥'𝐬 𝐰𝐞𝐛𝐬𝐢𝐭𝐞 𝐚𝐭: https://www.biofueljournal.com/articl... 𝐃𝐎𝐈: https://doi.org/10.18331/BRJ2023.10.3.3 𝗦𝗰𝗿𝗶𝗽𝘁: Microorganisms play a multitude of crucial roles within ecosystems, contributing significantly to Earth's biosphere maintenance. Their involvement spans various biogeochemical cycles and functional responsibilities. However, when addressing complex metabolic pathways, the limitations of the single-population approach become apparent. To overcome these limitations and enhance microbial efficacy, the development of artificial microbial consortia emerges as a promising solution. A team of researchers from Hungary and the UK has pioneered this innovative approach in their paper titled 'Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation.' Their work encompasses characterizing the degradation performance of bacteria, fungi, and yeast, followed by the design and construction of diverse microbial consortia tailored for solid-state treatment of agricultural lignocellulosic residues. Their findings indicate that the inclusion of yeast in mixed cultures significantly boosts degradation efficiency. Two specific microbial consortia, named BFY4 and BFY5, have shown remarkable enhancements in hydrolytic enzyme activities and sugar yields throughout the process. Notably, the highest total cellulase and xylanase activities were achieved after 72 hours of biological pretreatment of wheat straw, with CMCase activity peaking when wheat bran was used as a substrate. These findings represent a significant advancement in fundamental knowledge, laying the foundation for potential pilot-scale bioprocess applications. We invite you to explore the full paper, published in the September 2023 issue of the Biofuel Research Journal, available for free on the journal's website at www.biofueljournal.com