У нас вы можете посмотреть бесплатно #08 Green's theorem in xy plane شرح نظرية جرين или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Green's theorem is a fundamental result in vector calculus that relates a line integral around a simple closed curve in the xy-plane to a double integral over the region enclosed by that curve. It establishes a connection between the circulation around a curve and the flux across the enclosed region. In the two-dimensional Cartesian coordinate system (xy-plane), Green's theorem states: ∮C F · dr = ∬D ( ∂Q/∂x - ∂P/∂y ) dA where: ∮C represents the line integral taken counterclockwise around the closed curve C. F = (P, Q) is a vector field defined on the region D enclosed by C, where P and Q are functions of x and y. dr is an infinitesimal vector tangent to the curve C. ∂Q/∂x and ∂P/∂y are the partial derivatives of Q with respect to x and P with respect to y, respectively. ∬D represents the double integral over the region D enclosed by C. dA is an infinitesimal area element in the xy-plane. In simpler terms, Green's theorem states that the line integral of a vector field F around a closed curve C is equal to the double integral of the curl of F over the region D enclosed by C. The curl of F is given by ∂Q/∂x - ∂P/∂y, where P and Q are the components of the vector field. Green's theorem is a powerful tool in physics and engineering, particularly in the study of fluid flow, electromagnetism, and potential theory. It provides a useful relationship between line integrals and surface integrals, allowing for the conversion of one type of integral into the other when solving various problems involving vector fields in the xy-plane.