• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Intro to Credit Risk Modeling | Step-by-Step Follow Along R Tutorial скачать в хорошем качестве

Intro to Credit Risk Modeling | Step-by-Step Follow Along R Tutorial 8 years ago

Rstats

R programming

data science

data analysis

learn R

R tutorial

data

big data

R for data science

R for data analysis

data science tutorial

data analysis tutorial

finance

credit risk modeling

Rfinance

quant

applied finance with R

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Intro to Credit Risk Modeling | Step-by-Step Follow Along R Tutorial
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Intro to Credit Risk Modeling | Step-by-Step Follow Along R Tutorial в качестве 4k

У нас вы можете посмотреть бесплатно Intro to Credit Risk Modeling | Step-by-Step Follow Along R Tutorial или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Intro to Credit Risk Modeling | Step-by-Step Follow Along R Tutorial в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Intro to Credit Risk Modeling | Step-by-Step Follow Along R Tutorial

Learn more about credit risk modeling with R: https://www.datacamp.com/courses/intr... Hi, and welcome to the first video of the credit risk modeling course. My name is Lore, I'm a data scientist at DataCamp and I will help you master some basics of the credit risk modeling field. The area of credit risk modeling is all about the event of loan default. Now what is loan default? When a bank grants a loan to a borrower, which could be an individual or a company, the bank will usually transfer the entire amount of the loan to the borrower. The borrower will then reimburse this amount in smaller chunks, including some interest payments, over time. Usually these payments happen monthly, quarterly or yearly. Of course, there is a certain risk that a borrower will not be able to fully reimburse this loan. This results in a loss for the bank. The expected loss a bank will incur is composed of three elements. The first element is the probability of default, which is the probability that the borrower will fail to make a full repayment of the loan. The second element is the exposure at default, or EAD, which is the expected value of the loan at the time of default. You can also look at this as the amount of the loan that still needs to be repaid at the time of default. The third element is loss given default, which is the amount of the loss if there is a default, expressed as a percentage of the EAD. Multiplying these three elements leads to the formula of expected loss. In this course, we will focus on the probability of default. Banks keep information on the default behavior of past customers, which can be used to predict default for new customers. Broadly, this information can be classified in two types. The first type of information is application information. Examples of application information are income, marital status, et cetera. The second type of information, behavioral information, tracks the past behavior of customers, for example the current account balance and payment arrear history. Let's have a look at the first ten lines of our data set. This data set contains information on past loans. Each line represents one customer and his or her information, along with a loan status indicator, which equals 1 if the customer defaulted, and 0 if the customer did not default. Loan status will be used as a response variable and the explanatory variables are the amount of the loan, the interest rate, grade, employment length, home ownership status, the annual income and the age. The grade is the bureau score of the customer, where A indicates the highest class of creditworthiness and G the lowest. This bureau score reflects the credit history of the individual and is the only behavioral variable in the data set. For an overview of the data structure for categorical variables, you can use the CrossTable() function in the gmodels package. Applying this function to the home ownership variable, you get a table with each of the categories in this variable, with the number of cases and proportions. Using loan status as a second argument, you can look at the relationship between this factor variable and the response. By setting prop.r equal to TRUE and the other proportions listed here equal to FALSE, you get the row-wise proportions. Now what does this result tell you? It seems that the default rate in the home ownership group OTHER is quite a bit higher than the default rate in, for example, the home ownership group MORTGAGE, with 17.5 versus 9.8 percent of defaults in these groups, respectively. Now, let's explore other aspects of the data using R.

Comments
  • R tutorial: Importing, exporting and converting time series 8 years ago
    R tutorial: Importing, exporting and converting time series
    Опубликовано: 8 years ago
    38310
  • Credit Risk Modeling (For more information, see www.bluecourses.com ) 9 years ago
    Credit Risk Modeling (For more information, see www.bluecourses.com )
    Опубликовано: 9 years ago
    170011
  • The Basics of Commercial Credit Analysis 2 years ago
    The Basics of Commercial Credit Analysis
    Опубликовано: 2 years ago
    36694
  • ROC and AUC, Clearly Explained! 5 years ago
    ROC and AUC, Clearly Explained!
    Опубликовано: 5 years ago
    1699374
  • Learn R in 39 minutes 2 years ago
    Learn R in 39 minutes
    Опубликовано: 2 years ago
    901669
  • Daily Life as a Model Validator in Banking 4 years ago
    Daily Life as a Model Validator in Banking
    Опубликовано: 4 years ago
    10389
  • 7. Value At Risk (VAR) Models 10 years ago
    7. Value At Risk (VAR) Models
    Опубликовано: 10 years ago
    542357
  • Loss Given Default as a Function of the Default Rate 11 years ago
    Loss Given Default as a Function of the Default Rate
    Опубликовано: 11 years ago
    22659
  • SPSS course for beginners: Stats basics, creating variables, data entry, descriptive stats 3 years ago
    SPSS course for beginners: Stats basics, creating variables, data entry, descriptive stats
    Опубликовано: 3 years ago
    298910
  • What is UX Research? | Google UX Design Certificate 4 years ago
    What is UX Research? | Google UX Design Certificate
    Опубликовано: 4 years ago
    398620

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS