У нас вы можете посмотреть бесплатно Step by Step Tutorial on Logistic Regression in Python | sklearn |Jupyter Notebook или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Explore the world of logistic regression with our comprehensive, step-by-step tutorial using Python’s sklearn library and Jupyter Notebook. Perfect for beginners and experienced programmers alike, this video walks you through setting up your Python environment, importing libraries, and preparing your dataset. Learn how to build a logistic regression model to classify data effectively, interpret results, and assess model performance with precision. We cover essential topics like data preprocessing, feature scaling, and confusion matrices, providing practical examples and clear explanations. Enhance your data science skills and understand how logistic regression can be applied in various real-world scenarios, from marketing to healthcare. This tutorial is ideal for anyone looking to deepen their understanding of machine learning and predictive modeling. Subscribe to our channel for more Python and data science tutorials, and join our community to become proficient in logistic regression and other essential techniques in data analysis. Please excuse my sound quality. I will try to improve it in the future. Here is the link to the dataset used in this video: https://github.com/rashida048/Dataset... Please feel free to check out my Data Science blog where you will find a lot of data visualization, exploratory data analysis, statistical analysis, machine learning, natural language processing, and computer vision tutorials and projects: https://regenerativetoday.com/ Twitter page: / rashida048 Facebook Page: https://regenerativetoday.com/ #logisticRegression #machinelearning #datascience #dataAnalytics #python #sklearn #jupyternotebook