У нас вы можете посмотреть бесплатно Monte Carlo Analysis in VLSI: Variations, Yield, and Circuit Reliability Explained или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we take a deep, practical look at Monte Carlo analysis for semiconductor devices and circuits. Modern CMOS technologies exhibit significant process variation, and Monte Carlo simulation provides the framework to understand how randomness in manufacturing impacts delay, current, noise margins, mismatch, and overall yield. We begin by identifying sources of device variability: lithography imperfections, random dopant fluctuations, line-edge roughness, work-function variation, oxide thickness shifts, temperature gradients, and voltage fluctuations. With this foundation, we explain how to set up a Monte Carlo simulation by defining statistical distributions, generating random samples, and running repeated deterministic circuit or device simulations. Topics covered in this lecture include: • Probability distributions and why variation is not always Gaussian • Law of large numbers and the 1/sqrt(N) scaling of error • Device-level Monte Carlo: VT variation, Ion and Ioff spread, sensitivity analysis • Circuit-level Monte Carlo: offset voltage in differential pairs, timing variation, clock skew, jitter, and SRAM read/write failure • Global vs local variation, Pelgrom mismatch, spatial correlation and layout dependence • How temperature and supply variation integrate with process variation • Aging, reliability, and long-term statistical modeling • Using PDK statistical models correctly in EDA tools We then connect Monte Carlo simulation to real design decisions: • Functional yield and parametric yield • Guardbanding, design centering, and margin optimization • How to interpret Monte Carlo histograms, tails, and distribution skew • Setting timing budgets and reliability margins based on statistical outcomes • Practical examples from analog, digital, and memory design flows This lecture is ideal for students and engineers in semiconductor devices, VLSI design, reliability engineering, and anyone who wants a rigorous framework for understanding how variation affects real circuits.