У нас вы можете посмотреть бесплатно Benchmarking Beyond Statistics: Data-Driven Footprints for Explainable Black-Box Optimization или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Title: Benchmarking Beyond Statistics: Data-Driven Footprints for Explainable Black-Box Optimization Speaker: Tome Eftimov (https://cs.ijs.si/eftimov/) Abstract: This talk explores how emerging benchmarking and meta-learning methodologies are redefining the way we evaluate and select optimization algorithms, moving toward a trustworthy and explainable paradigm. Two promising directions will be highlighted. The first focuses on representative instance selection, ensuring that benchmarking data are diverse and generalizable rather than tailored to narrow or convenient test sets. The second introduces the concept of algorithmic footprints—digital signatures that capture how algorithms interact with problem landscapes, revealing which landscape features influence their success or failure. Together, these developments are paving the way for a new generation of explainable and automated optimization. By replacing simple statistics with interpretable, data-grounded insights, the field is advancing toward a future where black-box optimization becomes as transparent, reproducible, and knowledge-transferable systems.