• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Game Theory - Fair And Envy-Free Cake Cutting скачать в хорошем качестве

Game Theory - Fair And Envy-Free Cake Cutting 3 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Game Theory - Fair And Envy-Free Cake Cutting
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Game Theory - Fair And Envy-Free Cake Cutting в качестве 4k

У нас вы можете посмотреть бесплатно Game Theory - Fair And Envy-Free Cake Cutting или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Game Theory - Fair And Envy-Free Cake Cutting в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Game Theory - Fair And Envy-Free Cake Cutting

How to fairly cut cakes is a classic mathematical problem which can be considered as a metaphor for a group of real-world problems. There are two requirements for the cutting solution, namely, Fairness and Envy-Free. Fairness means that, if there are N players to attend the game to cut a cake, the final solution will make each of them feel that they get at least 1 over N of the cake. You may wonder why each of them will get no less than 1 over N but the total is 1? This 1 over N is a subjective interpretation from an individual player instead of the physical size. For example, some people prefer chocolate to fruits. So they will consider the parts containing more chocolate are better than the part having more fruits, although the two parts are the same size, and thus think they will get more than 1 over N if they choose the parts having more chocolate. Another requirement to cut the cake is the envy-free solution. Although a player may get a part more than 1 over N, if some other players get more than him, he may envy them. For example, if there are three players in the game, and from player 1's perspective, he gets one third of the total cake and the other two players get one fourth and 5 over 12 respectively. So, for player 1, although he gets at least one third of the cake. However, it is not an envy-free solution because the third player gets more than him. So, envy-free is an enhanced requirement than fairness. An envy-free solution must be a fair solution, but not vice versa. This video will introduce the famous Selfridge-Conway procedure which perfectly provides the fairly and envy-free solution for dividing a cake for three players. Let's consider a simple scenario in which two players are in the game. How to provide a fair and evey-free solution for two players? The simple solution will be that player 1 cuts the cake and player 2 will do the pick-up first. Since player 2 will pick up first, player 1 will honestly divide the cake evenly into two pieces from his perspective. No matter which one player 2 takes, player 1 will believe that he gets 1/2 of the cake and there will be no envy. For player 1, since he will be the person to pick up first. He will definitely choose the one which he thinks to be better than another piece. So, this procedure will be a fair and envy-free solution. Also, we have a conclusion that the person who picks up first will not envy the one who picks up after him. If there are three players in the game, the procedure will be more complicated. The first step, player 1 will cut the cake into three pieces from his perspective and let other players choose first. Similar to the 2-player case, to avoid the result that he will get the smallest part, player 1 will try his best to divide the cake evenly into 3 pieces. The second step, let player 2 and player 3 pick up their favorite pieces. If they pick up different pieces, then the third piece will be assigned to player 1 and the whole problem will be resolved. Everybody will be happy with what they get and there will be no envy. If player 2 and play 3 are both picking up the same piece, say piece C. The third step, if player 2 think the ranking of those 3 pieces are C, B and A, then we will ask player 2 to cut a small piece off from piece C to make the leftover the same size as piece B. Let's name this extra piece as D. Then we ask player 3 to pick up one from the modified piece C and piece B. We will create a rule like this. If player 3 doesn't pick up the modified piece C, player 2 must pick it up. This means that modified piece C cannot be left to player 1. The fourth step, if player 3 picks up the modified piece C, then player 2 will cut the extra piece D into three pieces, say D1, D2 and D3, which will be picked up via the following turn : player 3, player 1 and player 2. Now, let's consider how each player will consider what they get. Since player 3 picks up C and player 2 picks up B, player 1 will get A. From player 1's perspective, he will finally get 1/3 of the cake plus one of D1, D2 or D3. Since he will pick up those small pieces before player 2. So, he will not envy player 2. Of course, he will not envy player 3 either because, from player 1's point of view, player 3 didn't even get 1/3 of the cake. For player 2, since he cut D evenly into D1, D2 and D3. He will finally get B plus one of those three pieces. From player 2's point of view. D1, D2 and D3 are the same. B and modified C will be bigger than A. So, player 2 will not envy other players because he won't think they will get more. For player 3, he will also think B and modified C will be bigger than A. He takes the modified C plus a piece from D1, D2 and D3. Since he will pick up the small piece before other players, he will not envy them. For now, everyone picks up their own parts and everyone will be happy.

Comments
  • The Duel Game - Game Theory - Why A Small Fish Can Be Easier To Survive ? 2 года назад
    The Duel Game - Game Theory - Why A Small Fish Can Be Easier To Survive ?
    Опубликовано: 2 года назад
  • The Mathematically Correct Way to Cut a Cake 1 год назад
    The Mathematically Correct Way to Cut a Cake
    Опубликовано: 1 год назад
  • How To Split A Cake Fairly Using Math 10 лет назад
    How To Split A Cake Fairly Using Math
    Опубликовано: 10 лет назад
  • But what is the Central Limit Theorem? 2 года назад
    But what is the Central Limit Theorem?
    Опубликовано: 2 года назад
  • Оружие математика | Теория категорий и почему нам это не всё равно 1.0 1 год назад
    Оружие математика | Теория категорий и почему нам это не всё равно 1.0
    Опубликовано: 1 год назад
  • Pirates' Gold Coins Puzzle - Game Theory 3 года назад
    Pirates' Gold Coins Puzzle - Game Theory
    Опубликовано: 3 года назад
  • Margaret Neale: Negotiation: Getting What You Want 12 лет назад
    Margaret Neale: Negotiation: Getting What You Want
    Опубликовано: 12 лет назад
  • The Scientific Way to Cut a Cake - Numberphile 11 лет назад
    The Scientific Way to Cut a Cake - Numberphile
    Опубликовано: 11 лет назад
  • The Infinite Pattern That Never Repeats 5 лет назад
    The Infinite Pattern That Never Repeats
    Опубликовано: 5 лет назад
  • What is a Fourier Series? (Explained by drawing circles) - Smarter Every Day 205 7 лет назад
    What is a Fourier Series? (Explained by drawing circles) - Smarter Every Day 205
    Опубликовано: 7 лет назад
  • ⚡️ПИНКУС: Трамп ВОЗМУТИЛСЯ из-за слов Путина. НАБРОСИЛСЯ на Зеленского. НЕОЖИДАННЫЙ поворот в войне 7 часов назад
    ⚡️ПИНКУС: Трамп ВОЗМУТИЛСЯ из-за слов Путина. НАБРОСИЛСЯ на Зеленского. НЕОЖИДАННЫЙ поворот в войне
    Опубликовано: 7 часов назад
  • Это уравнение изменит ваш взгляд на мир 5 лет назад
    Это уравнение изменит ваш взгляд на мир
    Опубликовано: 5 лет назад
  • Focal Points and Multiple Equilibria: A Game Theory Puzzle 3 года назад
    Focal Points and Multiple Equilibria: A Game Theory Puzzle
    Опубликовано: 3 года назад
  • Why monkeys (and humans) are wired for fairness | Sarah Brosnan 5 лет назад
    Why monkeys (and humans) are wired for fairness | Sarah Brosnan
    Опубликовано: 5 лет назад
  • This pattern breaks, but for a good reason | Moser's circle problem 2 года назад
    This pattern breaks, but for a good reason | Moser's circle problem
    Опубликовано: 2 года назад
  • Equally sharing a cake between three people - Numberphile 8 лет назад
    Equally sharing a cake between three people - Numberphile
    Опубликовано: 8 лет назад
  • Selfridge-Conway 3 Person Cake Division - 4/6 Class Video 5 лет назад
    Selfridge-Conway 3 Person Cake Division - 4/6 Class Video
    Опубликовано: 5 лет назад
  • Fair Cake Cutting (Intro to Game Theory Part 2) - Thursday Tidbit 3 года назад
    Fair Cake Cutting (Intro to Game Theory Part 2) - Thursday Tidbit
    Опубликовано: 3 года назад
  • Самая Сложная Задача В Истории Самой Сложной Олимпиады 11 месяцев назад
    Самая Сложная Задача В Истории Самой Сложной Олимпиады
    Опубликовано: 11 месяцев назад
  • NYT: Лемма Шпернера побеждает задачу гармоничного разделения ренты 8 лет назад
    NYT: Лемма Шпернера побеждает задачу гармоничного разделения ренты
    Опубликовано: 8 лет назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5