У нас вы можете посмотреть бесплатно Solving the Financial Data Problem: How We Built an AI that Filters Market Noise или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Financial data is unique because it combines extreme volatility with specific, repeatable patterns. This week, I wanted to step back from the trading signals and discuss the engineering challenge of building retailtrader.ai. We look at how our multi-layered neural network identifies potential setups and—crucially—how a secondary "logic filter" traverses the chart to validate the trade, assess the quality, and determine risk parameters. We also discuss the economics of AI and how technological advancements allow us to bring institutional-grade processing power to retail traders at a fraction of the cost. Key Topics: Neural Networks: Detecting patterns before the move. Grid Analysis: Rigorous backtesting across different caps and timeframes. The AI Advantage: Why coding is no longer the bottleneck—thinking is. Happy Holidays and see you in the New Year! Option 3: Short & Punchy (Best for Email/Social Clips) Title: What happens before you see a Signal? 🧠 Alternative: The "Quality of Thinking" behind our AI. Description: Ever wonder what happens in the background before a trade signal hits your dashboard? It involves a multi-layered neural network, a secondary setup filter, a quality assessment engine, and massive amounts of backtesting. Today I’m breaking down exactly how RetailTrader.ai processes market noise to find high-probability turnaround points. With AI, writing code is easy. The real edge comes from the quality of thinking applied to the data. Watch the full breakdown here. 👇 #FinTech #AI #TradingAlgo #DataScience #RetailTrader