У нас вы можете посмотреть бесплатно Relative Interior Rule in Block-Coordinate Descent или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Authors: Tomáš Werner, Daniel Průša, Tomáš Dlask Description: It is well-known that for general convex optimization problems, block-coordinate descent can get stuck in poor local optima. Despite that, versions of this method known as convergent message passing are very successful to approximately solve the dual LP relaxation of the MAP inference problem in graphical models. In attempt to identify the reason why these methods often achieve good local minima, we argue that if in block-coordinate descent the set of minimizers over a variable block has multiple elements, one should choose an element from the relative interior of this set. We show that this rule is not worse than any other rule for choosing block-minimizers. Based on this observation, we develop a theoretical framework for block-coordinate descent applied to general convex problems. We illustrate this theory on convergent message-passing methods.