У нас вы можете посмотреть бесплатно Rethinking RAG-Based Gen AI With Fivetran, Snowflake, And Private, Structured Data или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Imagine building your own personalized California wine country visit assistant based on a private, structured data set and a RAG-based approach to Gen AI. This video walks you step-by-step through the process of doing that. First, you’ll learn how to use Fivetran’s automated data movement platform to replicate a custom, structured winery and vineyard visit data set (wineries and vineyards across all California wine country regions) from a relational database source to the Snowflake Data Cloud. You’ll then see how Fivetran’s automation allows you to move data without the hassle of schema creation or schema management, achieve reliable incremental syncs and change data capture, and handle a range of data privacy requirements. From there, you’ll be walked through the process of creating LLM-friendly data transformations in Snowflake for this structured data set, and you'll see how you can use the newly transformed data and Snowflake Cortex to build an interactive California wine country visit assistant application as a Snowflake Native Application with Streamlit. Subscribe for more! http://www.snowflake.com/YTsubscribe/ Explore sample code, download tools, and connect with peers: https://developers.snowflake.com/