У нас вы можете посмотреть бесплатно Ramanujan’s Theorem Made Easy | Hypergeometric Series | Msc maths || Advanced Special Functions или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we explain Ramanujan’s Theorem in Hypergeometric Function in a clear, step-by-step manner, specially designed for MSc Mathematics, NET, GATE, and university exams. Ramanujan’s Theorem is an important result in Advanced Special Functions, closely connected with hypergeometric series, gamma functions, and summation techniques. This lecture focuses on concept building, mathematical derivation, and exam relevance. 🔹 What you will learn in this video: • Statement of Ramanujan’s Theorem • Connection with Hypergeometric Function • Step-by-step derivation and explanation • Important assumptions and conditions • Common mistakes students make • How this theorem is used in exams • Previous year exam-oriented discussion This lecture is especially useful for students of: All Video Playlist • Advanced special function ( 3rd sem) For handwritten notes : Message NB Creator (Msc Mathematics) on WhatsApp. https://wa.me/917987084690 • Saalschutz Theorem Explained | Hypergeomet... • Euler’s Transformation in Hypergeometric F... Previous Lecture :- • Gauss Summation Theorem Explained | Hyperg... ❤️ Gauss Summation Theorem 👈 Euler transformation :- • Gauss Summation Theorem Explained | Hyperg... Message me :- 7987084690 Follow me on instagram @math_magician14 Link :- 🔗 https://www.instagram.com/math_magici... Telegram :- https://t.me/nbcreator Thanks NB CREATOR ( Navneet Bajpai Sir ) YOUTUBE ✔ MSc Mathematics (Special Functions) ✔ NET / GATE / SET Mathematics ✔ Advanced Special Function courses ✔ University semester examinations 📌 The explanation is kept simple, logical, and structured, so that even complex steps become easy to understand. #RamanujanTheorem #HypergeometricFunction #AdvancedSpecialFunction #MScMathematics #NETMathematics #GATEMaths