У нас вы можете посмотреть бесплатно Mastering Hypothesis Testing|S2|Concepts, Formulations & Application или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Resource Person: Dr. Smruti Vakil, Associate Professor, Narayana Business School, Ahmedabad This workshop provides a comprehensive, application-oriented understanding of hypothesis development and hypothesis testing, one of the most critical pillars of empirical research. Participants will learn the meaning and purpose of a hypothesis, how to frame clear and testable hypotheses, and how to systematically test them using statistical procedures. The session explains the complete hypothesis testing process including: identifying variables, setting null and alternative hypotheses, selecting appropriate statistical tests, determining significance levels, interpreting p-values, and drawing meaningful conclusions. Through real-world examples and step-by-step demonstrations, the workshop equips learners with practical skills to analyze data, validate assumptions, avoid common testing errors, and communicate findings effectively. The workshop ensures that participants gain the confidence to design rigorous studies and make evidence-based decisions across academic and professional contexts. Outcomes: After attending this workshop, participants will be able to Understand the meaning and characteristics of a hypothesis in research. Frame clear, measurable, and testable null (H₀) and alternative (H₁) hypotheses. Identify types of hypotheses and one-tailed, two-tailed. Follow the complete hypothesis testing process from problem definition to decisionmaking and Interpret test statistics, critical values, p-values, and significance levels. Avoid common mistakes such as Type I and Type II errors, wrong test selection, or incorrect interpretation and Apply hypothesis testing in academic research, market surveys, social studies, and real-life decision-making.