У нас вы можете посмотреть бесплатно [81] An Introduction to ImageIO (Sebastian Wallkötter) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Join our Meetup group for more events: https://www.meetup.com/data-umbrella Sebastian Wallkötter: An Introduction to ImageIO Resources ImageIO's GitHub: https://github.com/imageio/imageio Slides: https://docs.google.com/presentation/... About the Event Get ready for an exciting and informative introduction to ImageIO! ImageIO is a popular Python library that offers powerful capabilities for reading and writing images and videos. Together, we'll explore common use cases, best practices, and anti-patterns when using the library. We'll also build intuition for ImageIO’s v3 API, which will allow us to solve complex and non-standard problems. Plus, we'll take a brief look at ImageIO's plugin system, which – among other things – allows tweaking I/O performance. And to top it all off, we'll dive into an end-to-end machine-learning example of how to use ImageIO to train a vision model. So don't miss this chance to expand your knowledge and improve your Python skills with ImageIO. Timestamps 00:00 Welcome and Beryl introduces the Data Umbrella team 00:55 Ways to Support Data Umbrella 01:49 Information about Data Umbrella 03:32 Data Umbrella: Upcoming events 03:58 Beryl introduces Sebastian Wallkötter 04:53 Sebastian begins his talk 05:03 Introduction to ImageIO 05:21 Agenda for the talk 06:24 What is ImageIO? 08:37 Why be excited about ImageIO 11:52 How to generate a GIF from webcam frames 13:38 How to build a FastAPI callback 15:44 ImageIO API 18:18 Writing videos incrementally using `imopen` 20:42 Other cool things you can do with ImageIO 23:42 Q&A: Why FastAPI over Flask for the demo? 24:54 Visual Recommendation Engine 25:14 What is Visual Recommendation 26:38 System Design for the Visual Recommendation System 33:10 Loading images using ImageIO 34:45 Training the model using Triplet Loss 36:49 Creating the Custom Dataset in PyTorch 39:44 Baking transformations into your dataset to alleviate IO bottleneck 40:31 Sebastian summarizes where ImageIO can be really useful 41:19 Beryl thanks Sebastian for the talk, and next up is the Q&A 41:35 Q&A: Are you a numpy-affiliated project, and how are you funded? 42:57 Q&A: What is the best way for the community to connect with ImageIO? 44:05 Q&A: How large is your team of developers? 44:40 Q&A: Where can we get a copy of the slides? 44:58 Q&A: Do you collaborate with scikit-image developers? 45:34 Q&A: Do you anticipate any applications for video streaming? 47:00 Q&A: Are there tutorials for folks? 49:00 Q&A: Which industries use ImageIO? 50:44 Reshama thanks Sebastian, and it's the end of the webinar Sebastian Wallkötter LinkedIn: / sebastian-wallkoetter GitHub: https://github.com/FirefoxMetzger #python #opensource #scikit