У нас вы можете посмотреть бесплатно Preventing, Diagnosing & Curing Bad Data | Shailvi Wakhlu at PTH Conf 2025 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Data insights can only be as good as the quality of the data they’re based on. Inaccuracies and biases in your data can result in costly mistakes. In this talk, I highlight the typical lifecycle of data and the phases where bad data sneaks in. I also cover ways to prevent, diagnose & fix issues. ---- Businesses rely on good data to make thoughtful decisions. When that underlying data is of poor quality, it can lead to unexpected and costly outcomes. Thus, it is very important to prevent bad data from occurring in the first place, by understanding how it gets created. In this talk, I will explain the typical lifecycle of data, and walk through the phases where bad data gets introduced. Using relatable examples, I will explain the nuances of catching bad data early in the pipeline. I’ll also cover ways to diagnose common data problems, to find the root cause, and highlight ways to fix those issues. The talk provides a blueprint for anyone who works with data, to be proactive and intentional about prioritizing data quality. To some it up, my key takeaways from the talk will include: 1) What is bad data and why should we care about fixing it? 2) How can we prevent bad data from occurring? 3) How can we diagnose conditions that resemble poor data quality? 4) How can we cure and fix bad data? // FOLLOW US: ▸ Facebook: / portotechub ▸ LinkedIn: / portotechhub ▸ Instagram: / portotechhub