У нас вы можете посмотреть бесплатно Amazon Bedrock & Foundation Models | Generative AI, LLMs, RAG, Agents, Fine-Tuning & Evaluation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
If you want to learn more check our AWS courses: https://www.cloudwolf.com/ultimate-aw... — Get AWS certified in no time. 🔔 Don’t forget to subscribe for more AWS certification prep content and tutorials! / YouTube @CloudWolfAWSA / LinkedIn @CloudWolfAWS / Instagram @CloudWolfAWS This is a full-length deep dive (1:16:28) into Generative AI, Amazon Bedrock, and Foundation Models — designed for AWS exam success and real-world understanding. We start by clarifying AI vs Machine Learning vs Deep Learning vs Generative AI, then move into Foundation Models on Amazon Bedrock: what they are, why pre-training is expensive, how Bedrock model access works, and how token-based pricing is structured. From there we cover the core concepts behind Large Language Models (LLMs): inference, context windows, tokens, embeddings, and how text generation happens one token at a time. We also explain diffusion models and the main GenAI image use cases (text-to-image, image-to-text, image-to-image). Finally, we tie it together with the foundation model lifecycle, how to select a model, and the major customisation approaches you must know for the exam: prompt engineering, inference parameters, RAG, agents, fine-tuning, and training — plus how models are evaluated using human evaluation, ROUGE, BLEU, and BERTScore. 🔹 Key Topics Covered: Generative AI and foundation model fundamentals Amazon Bedrock: model access, providers, token pricing LLM basics: inference, context windows, tokens, embeddings Diffusion models + GenAI image workflows Foundation model lifecycle (data → pre-train → fine-tune → iterate) How to choose a foundation model (cost, modality, latency, compliance) Customisation: prompts, inference params, RAG, agents, fine-tuning, training Prompt risks (prompt injection, output manipulation) Evaluation: human, ROUGE, BLEU, BERTScore All of our courses available at https://www.cloudwolf.com/ ⏱️ Timestamps (1:16:28 runtime) 00:00 – Intro: Where Generative AI fits (AI vs ML vs DL vs GenAI) 03:40 – What Generative AI does (creating new data) + key use cases 08:10 – Foundation Models explained (pre-training concept, why it’s costly) 13:20 – Amazon Bedrock overview: model access, providers, base models 18:10 – Bedrock pricing: tokens, cost considerations, picking cheaper models 23:10 – Foundation model lifecycle: data collection → pre-train → fine-tune → iterate 30:30 – LLM basics: self-supervised learning + predicting the next token 36:40 – Inference explained (token-by-token generation) 41:10 – Context windows: limitations, trade-offs, cost implications 45:10 – Tokens and embeddings: tokenisation + meaning as vectors 51:20 – Transformers: what they are (high-level, exam-safe explanation) 55:40 – Bedrock text generation examples: summarisation, ads, extraction, PII removal 01:01:10 – GenAI for images: text-to-image, image-to-text, image-to-image 01:05:30 – Diffusion models: noise addition/removal and exam association 01:09:00 – Selecting a foundation model: cost, modality, latency, compliance, scaling 01:12:10 – Customisation methods: prompt engineering, inference params, RAG, agents 01:14:50 – Fine-tuning vs training, transfer learning terminology (exam note) 01:15:40 – Evaluation methods: Human vs ROUGE vs BLEU vs BERTScore + summary 🧠 Hashtags #AmazonBedrock #FoundationModels #GenerativeAI #AWS #LLM #RAG #AIAgents #FineTuning #AWSExamPrep #CloudWolf