У нас вы можете посмотреть бесплатно Streaming vs. Syncing: Why Your Chat App Is Burning Bandwidth или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
If you’re a developer building an AI chat app and want to ensure seamless user experiences—even during page refreshes or across multiple tabs—this video is for you. It introduces Convex’s Persistent Text Streaming component, a solution designed to handle real-time streaming and data persistence challenges in AI chat applications. The Convex component to get started: https://www.convex.dev/components/per... 🔍 What You’ll Learn • How to implement real-time AI chat streaming using Convex. • Techniques to persist chat data, ensuring continuity across sessions and devices. • Strategies to optimize bandwidth and reduce redundant data transmission. • Integration of Convex’s serverless functions and database for efficient backend operations.  By the end of this video, you’ll have a clear understanding of how to build a robust, real-time AI chat application that maintains state and performance, even under challenging conditions. ⏱️ Timestamps 1. 00:00 - Introduction to Persistent Text Streaming with Convex 2. 02:13 - Demonstrating Real-Time Updates Across Multiple Views 3. 03:35 - Addressing Data Merging Challenges in Streaming 4. 04:42 - Enhancing Efficiency with Word-by-Word Streaming 5. 06:20 - Reducing Update Frequency for Optimal Performance 6. 07:26 - Leveraging Convex’s Serverless Functions for Streaming 7. 09:14 - Organizing Messages Using Stream IDs 8. 10:22 - Managing Streaming Based on User Roles and Sessions #AI #AIChatApp #PersistentTextStreaming #RealTimeStreaming #ServerlessBackend #fullstackdevelopment #openia #chatapp #OpenAIIntegration #WebSockets #DeveloperTools #convex #database