У нас вы можете посмотреть бесплатно Reranking Simply Explained + Full Code | Langchain & Amazon Bedrock или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this new AWS GenAI tutorial, you will learn how to quickly and easily use the latest and most powerful Cohere Reranker with Amazon Bedrock & Langchain. Specifically, you will learn : What is a reranker and what is a cross-encoder The difference between bi-encoders and cross-encoders How to improve your rag with reranking How to call Cohere Rerank 3.5 through AWS Bedrock Implement reranking with Langchain LCEL Build a full Langchain enhanced retriever with LM Studio local embedding and bedrock reranker. Don't forget to like and subscribe to the channel ! Music track: Marshmallow by Lukrembo Source: https://freetouse.com/music Music for Videos (Free Download) 🧠 Resources Cohere Rerank 3.5 Blog : https://cohere.com/blog/rerank-3pt5 Bi-encoders v.s. Cross-encoders Blog : / bi-encoder-vs-cross-encoder-when-to-use-wh... AWS Blog on Enhancing Search with Reranking : https://aws.amazon.com/blogs/big-data... Config/Credential Files for AWS login : https://docs.aws.amazon.com/cli/v1/us... 📚 Chapters 00:00 Intro 00:15 Cohere Rerank 3.5 01:16 Bi-Encoders vs. Cross-Encoders 03:22 Benchmark & Evaluation 3:55 Bedrock Support 4:19 AWS Credentials & Access 5:19 Sample Data 5:38 Method #1 : Call using Cohere 7:04 Method #2 : Call using Boto3 8:02 Langchain Integration : Vanilla Retriever 9:22 Langchain Integration : Enhanced Retriever 10:46 Discussion #rerank #langchain #rag #bedrock #cohere #python #aws #retriever #embedding #tutorial #explained #reranker