У нас вы можете посмотреть бесплатно Trigonometry(multiple angles) learn easily with pawan sir или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Understanding Multiple Angles in Trigonometry (Class 10) In trigonometry, you've already learned about the sine, cosine, and tangent of single angles, like sinθ or cosA. But what if you encounter angles that are multiples of a basic angle, such as 2θ, 3θ, or even 2θ? This is where the concept of Multiple Angles comes in! What are Multiple Angles? Simply put, multiple angles are expressions like 2A (double angle), 3θ (triple angle), or 2A (sub-multiple or half angle), where A or θ is a standard angle. Instead of directly finding the trigonometric ratio of, say, 60∘, we might want to find it using the trigonometric ratios of 30∘ (since 60∘=2×30∘). Why are they Important? The main reason we study multiple angles is to: Find trigonometric ratios of larger or smaller angles: If you know the trigonometric ratio of an angle, say 30∘, you can use multiple angle formulas to find the trigonometric ratios of 60∘ (double 30∘) or 15∘ (half of 30∘) without using a calculator or a trigonometric table. This is incredibly powerful! Simplify complex trigonometric expressions: Many trigonometric problems involve expressions with multiple angles. By using the appropriate formulas, you can simplify these expressions, making them easier to solve or prove. Solve trigonometric equations: Multiple angle formulas are essential tools for solving equations where the unknown angle appears as a multiple (e.g., finding θ if sin2θ=21). Key Formulas You'll Learn (Examples): For Class 10, you'll primarily focus on the double angle and half-angle (sub-multiple angle) formulas. Double Angle Formulas (for 2A): sin2A=2sinAcosA cos2A=cos2A−sin2A (and its other forms) tan2A=1−tan2A2tanA Half-Angle/Sub-Multiple Angle Formulas (for 2A): These are often derived from the double angle formulas, allowing you to find ratios of half an angle if you know the ratio of the full angle. For example, knowing cosA can help you find sin2A or cos2A. In a Nutshell: Multiple angle formulas are your new set of tools in trigonometry. They allow you to establish relationships between the trigonometric ratios of an angle and its multiples or sub-multiples. Mastering these formulas will significantly enhance your ability to solve a wider range of trigonometric problems and deepen your understanding of how angles and their ratios are interconnected. Get ready to explore these fascinating relationships!