У нас вы можете посмотреть бесплатно 🍪 CFD cookie 2 - Visiting all RANS models in OpenFOAM - Lam-Bremhorst K-Epsilon - Part 18 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
👉 Turbulence models in OpenFOAM | Theory and numerical pointers 🙃 RANS simulation using the LRN Lam-Bremhorst K-Epsilon Turbulence model 🥸 Zero Pressure Gradient Flat Plate – Re = 10 000 000 👌 00:00 Introduction 03:00 Some theory about the LRN Lam-Bremhorst K-Epsilon Turbulence model 09:40 Let's visit the case setup | The LRN case (wall resolving) 12:40 Distance normal to the wall computation | wallDist in OpenFOAM 18:10 Some extra comments 20:00 Let's run the case | The LRN case (wall resolving) 22:38 Let's take a look at the solution of the wall resolving case | LRE case 27:30 Let's take a look at the wall modeling case | HRE case 29:05 Final remarks This CFD cookie 🍪 is based on OpenFOAM 12, but the general guidelines and standard practices should work with any OpenFOAM version. 🤔 We also address the following question (CFD cookie 1): Without reference results (experimental, analytical, etc.), how do I know that my turbulent Multiphysics simulations are correct? You can find CFD cookie 1 at the following link: 👈 • 🍪 CFD cookie 1 - Turbulence modeling 🤪 This cookie has been approved by the 🍪 cookie monster 👻. Training material repository https://drive.google.com/drive/folder... Useful links: https://turbmodels.larc.nasa.gov/ https://www.wolfdynamics.com/tools.ht... Useful references: B. E. Launder, D. B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering. 1974. W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972. W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 1119–1130, 1973. B. E. Launder, B. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, Vol. 1(2), pp. 131-138. 1974. C. Lam, K. Bremhorst. Modified Form of k-epsilon Model for Predicting Wall Turbulence. ASME, Journal of Fluids Engineering, Vol. 103, pp. 456-460, 1981. C. Speziale, R. Abid, E. Anderson. A Critical Evaluation of Two-Equation Models for Near Wall Turbulence. ICASE Report 90-46, 1990. M. Gibson, A. Dafa Alia. Two-Equation Model for Turbulent Wall Flow. AIAA Jounral. Volume 33, Number August 1995. D. Apsley. https://personalpages.manchester.ac.u.... Turbulence modelling in the STREAM code, 2002. ********************************************************************************** Wolʇ Dynamics, your reliable partner for CAE solutions, CAD and solid modeling → Meshing → Simulations → Automation and optimization → Post-processing → Data analytics and ML → Reporting http://www.wolfdynamics.com/ Why Wolʇ Dynamics? Simply look at our banner - notice how the F appears backwards. Wolʇ Dynamics ↔ Flow Dynamics 😯+💣=🤯 **************************************************************************** 👉 Subscribe and hit the bell to see new videos or we will go back to OpenFOAM 3: / @wolfdynamicscfd 🖖 Join our channel to help us create more content. By joining our channel, you can also get access to perks: / @wolfdynamicscfd Follow us: Twitter → twitter.com/WolfDynamics LinkedIn → linkedin.com/company/wolf-dynamics **************************************************************************** Wolf Dynamics makes no warranty, express or implied, about the completeness, accuracy, reliability, suitability, or usefulness of the information disclosed in this training material. This training material is intended to provide general information only. Any reliance the final user place on this training material is therefore strictly at his/her own risk. Under no circumstances and under no legal theory shall Wolf Dynamics be liable for any loss, damage or injury, arising directly or indirectly from the use or misuse of the information contained in this training material. **************************************************************************** #cfd #cae #turbulence #openfoam #computationalfluiddynamics #aerospace #RANS