У нас вы можете посмотреть бесплатно Install TensorFlow on Windows 11: Step-by-Step Guide for CPU & GPU или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Installing TensorFlow on Windows 11 requires setting up system dependencies, configuring Python, and ensuring compatibility with CPU or GPU acceleration. This step-by-step guide provides everything needed to install TensorFlow 2.10 or lower on Windows Native, including software prerequisites, Microsoft Visual C++ Redistributable installation, Miniconda setup, GPU driver configuration, and verification steps. System Requirements: Before installing TensorFlow, ensure your system meets these requirements: Operating System: Windows 7 or higher (64-bit) Python Version: 3.9–3.12 pip Version: 19.0 or higher for Linux and Windows, 20.3 or higher for macOS Microsoft Visual C++ Redistributable: Required for Windows Native Long Paths Enabled: Ensure long paths are enabled in Windows settings For GPU support, install: NVIDIA GPU drivers: 525.60.13 (Linux) / 528.33 (WSL on Windows) CUDA Toolkit: Version 12.3 cuDNN SDK: Version 8.9.7 (Optional) TensorRT: To enhance model inference performance Step 1: Install Microsoft Visual C++ Redistributable TensorFlow requires Microsoft Visual C++ Redistributable for Visual Studio 2015, 2017, and 2019. Visit the official Microsoft Visual C++ Redistributable download page. Scroll to Visual Studio 2015, 2017, and 2019 section. Download and install the correct version for your system (x64). Step 2: Install Miniconda Miniconda is the recommended package manager for TensorFlow installation. Download Miniconda for Windows (64-bit). Double-click the installer and follow the installation steps. Step 3: Create a Conda Environment To prevent dependency conflicts, create a dedicated environment for TensorFlow: sh Copy Edit conda create --name tf python=3.9 conda activate tf Ensure the new environment is activated before proceeding. Step 4: Install GPU Dependencies (Optional) For TensorFlow GPU acceleration, install: NVIDIA GPU drivers CUDA and cuDNN via Conda: sh Copy Edit conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0 Verify GPU installation using: sh Copy Edit python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))" Step 5: Install TensorFlow First, upgrade pip to the latest version: sh Copy Edit pip install --upgrade pip Then install TensorFlow: sh Copy Edit pip install "tensorflow 2.11" ⚠ Important: Versions above 2.10 do not support Windows GPU natively. Step 6: Verify TensorFlow Installation For CPU Verification: Run the following command: sh Copy Edit python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))" If a tensor value appears, TensorFlow is correctly installed. For GPU Verification: Run the command: sh Copy Edit python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))" If a list of GPU devices appears, TensorFlow is using your NVIDIA GPU successfully. Conclusion This guide provides a detailed walkthrough for installing TensorFlow on Windows 11, covering CPU and GPU configurations, necessary dependencies, and post-installation verification. By following these steps, you can ensure a stable and optimized TensorFlow environment for deep learning projects. Links: https://codingmaster24.blogspot.com/2... https://www.tensorflow.org/install/pip https://www.tensorflow.org/install/pi... https://pypi.org/project/tensorflow-gpu/ https://www.nvidia.com/en-sg/data-cen...