• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

RI Seminar: Alec Jacobson : Geometry Processing in The Wild скачать в хорошем качестве

RI Seminar: Alec Jacobson : Geometry Processing in The Wild 6 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
RI Seminar: Alec Jacobson : Geometry Processing in The Wild
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: RI Seminar: Alec Jacobson : Geometry Processing in The Wild в качестве 4k

У нас вы можете посмотреть бесплатно RI Seminar: Alec Jacobson : Geometry Processing in The Wild или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон RI Seminar: Alec Jacobson : Geometry Processing in The Wild в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



RI Seminar: Alec Jacobson : Geometry Processing in The Wild

Alec Jacobson Assistant Professor Department of Computer Science, University of Toronto Geometry Processing in The Wild Abstract: Geometric data abounds, but our algorithms for geometry processing are failing. Whether from medical imagery, free-form architecture, self-driving cars, or 3D-printed parts, geometric data is often messy, riddled with “defects” that cause algorithms to crash or behave unpredictably. The traditional philosophy assumes geometry is given with 100% certainty and that algorithms can use whatever discretization is most convenient. As a result, geometric pipelines are leaky patchworks requiring esoteric training and involving many different people. Instead, we adapt fundamental mathematics to work directly on messy geometric data. As an archetypical example, I will discuss how to generalize the classic formula for determining the inside from the outside of a curve to messy representations of a 3D surface. This work helps keep the geometry processing pipeline flowing, as validated on our large-scale geometry benchmarks. Our long term vision is to replace the current leaky geometry processing pipeline with a robust workflow where processing operates directly on real geometric data found “in the wild”. To do this, we need to rethink how algorithms should gracefully degrade when confronted with imprecision and uncertainty. Our most recent work on differentiable rendering and geometry-based adversarial attacks on image classification demonstrates the potential power of this philosophy. Brief Bio: Alec Jacobson is an Assistant Professor and Canada Research Chair in the Departments of Computer Science and Mathematics at University of Toronto. Before that he was a post-doctoral researcher at Columbia University working with Prof. Eitan Grinspun. He received a PhD in Computer Science from ETH Zurich advised by Prof. Olga Sorkine-Hornung, and an MA and BA in Computer Science and Mathematics from the Courant Institute of Mathematical Sciences, New York University. His PhD thesis on real-time deformation techniques for 2D and 3D shapes was awarded the ETH Medal and the Eurographics Best PhD award. Leveraging ideas from differential geometry and finite-element analysis, his work in geometry processing improves exposure of geometric quantities, while his novel user interfaces reduce human effort and increase exploration. He has published several papers in the proceedings of SIGGRAPH. He leads development of the widely used geometry processing library, libigl, winner of the 2015 SGP software award. In 2017, he received the Eurographics Young Researcher Award.

Comments
  • RI Seminar: Yuke Zhu : Toward Generalist Humanoid Robots 2 месяца назад
    RI Seminar: Yuke Zhu : Toward Generalist Humanoid Robots
    Опубликовано: 2 месяца назад
  • Monte Carlo Geometry Processing 3 года назад
    Monte Carlo Geometry Processing
    Опубликовано: 3 года назад
  • Keynote: The Triangle is Dead, Long Live the Triangle! (Alec Jacobson, U. Toronto and Adobe) 1 год назад
    Keynote: The Triangle is Dead, Long Live the Triangle! (Alec Jacobson, U. Toronto and Adobe)
    Опубликовано: 1 год назад
  • Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024) 1 год назад
    Miles Cranmer - The Next Great Scientific Theory is Hiding Inside a Neural Network (April 3, 2024)
    Опубликовано: 1 год назад
  • The Vector Heat Method - SIGGRAPH 2019 6 лет назад
    The Vector Heat Method - SIGGRAPH 2019
    Опубликовано: 6 лет назад
  • RI Seminar: Sangbae Kim : Physical Intelligence and Cognitive Biases Toward AI 9 месяцев назад
    RI Seminar: Sangbae Kim : Physical Intelligence and Cognitive Biases Toward AI
    Опубликовано: 9 месяцев назад
  • Discrete Differential Geometry - Helping Machines (and People) Think Clearly about Shape 13 лет назад
    Discrete Differential Geometry - Helping Machines (and People) Think Clearly about Shape
    Опубликовано: 13 лет назад
  • Physics and Math of Shading | SIGGRAPH Courses 9 лет назад
    Physics and Math of Shading | SIGGRAPH Courses
    Опубликовано: 9 лет назад
  • A Swift Introduction to Geometric Algebra 5 лет назад
    A Swift Introduction to Geometric Algebra
    Опубликовано: 5 лет назад
  • Chris Maddison | The future of representation learning 4 года назад
    Chris Maddison | The future of representation learning
    Опубликовано: 4 года назад
  • Geometric Deep Learning | Michael Bronstein || Radcliffe Institute 8 лет назад
    Geometric Deep Learning | Michael Bronstein || Radcliffe Institute
    Опубликовано: 8 лет назад
  • A Laplacian for Nonmanifold Triangle Meshes - SGP 2020 5 лет назад
    A Laplacian for Nonmanifold Triangle Meshes - SGP 2020
    Опубликовано: 5 лет назад
  • Discrete Differential Geometry and Developability 8 лет назад
    Discrete Differential Geometry and Developability
    Опубликовано: 8 лет назад
  • Monte Carlo Geometry Processing (SGP Graduate School 2024) 1 год назад
    Monte Carlo Geometry Processing (SGP Graduate School 2024)
    Опубликовано: 1 год назад
  • RI Seminar: Michael Kaess: Factor Graphs for Robot Perception 7 лет назад
    RI Seminar: Michael Kaess: Factor Graphs for Robot Perception
    Опубликовано: 7 лет назад
  • RI Seminar: Alfred Rizzi : Developing Physically Capable and Intelligent Robots 10 месяцев назад
    RI Seminar: Alfred Rizzi : Developing Physically Capable and Intelligent Robots
    Опубликовано: 10 месяцев назад
  • You Can Find Geodesic Paths in Triangle Meshes by Just Flipping Edges - SIGGRAPH Asia 2020 5 лет назад
    You Can Find Geodesic Paths in Triangle Meshes by Just Flipping Edges - SIGGRAPH Asia 2020
    Опубликовано: 5 лет назад
  • Riemannian manifolds, kernels and learning 9 лет назад
    Riemannian manifolds, kernels and learning
    Опубликовано: 9 лет назад
  • RI Seminar: Nima Fazeli : Sensing the Unseen: Dexterous Tool Manipulation Through Touch and Vision 9 месяцев назад
    RI Seminar: Nima Fazeli : Sensing the Unseen: Dexterous Tool Manipulation Through Touch and Vision
    Опубликовано: 9 месяцев назад
  • Shape Correspondence and Functional Maps 8 лет назад
    Shape Correspondence and Functional Maps
    Опубликовано: 8 лет назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5