• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Solving real world data science tasks with Python Pandas! скачать в хорошем качестве

Solving real world data science tasks with Python Pandas! 5 years ago

KGMIT

Keith Galli

MIT

python

python 3

python programming

data science

data analysis

pandas

python pandas

python matplotlib

matplotlib

mathplotlib

groupby

csv python

tutorial

real world

apply method in pandas

data exploration

data cleaning

anaconda

jupyter notebook

jupyter notebook tutorial

spreadsheets python

excel python

plotting

graphing

coding

programming

data scientist

machine learning

AI

artificial intelligence

csv

panda

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Solving real world data science tasks with Python Pandas!
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Solving real world data science tasks with Python Pandas! в качестве 4k

У нас вы можете посмотреть бесплатно Solving real world data science tasks with Python Pandas! или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Solving real world data science tasks with Python Pandas! в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Solving real world data science tasks with Python Pandas!

Practice your Python Pandas data science skills with problems on StrataScratch! https://stratascratch.com/?via=keith In this video we use Python Pandas & Python Matplotlib to analyze and answer business questions about 12 months worth of sales data. The data contains hundreds of thousands of electronics store purchases broken down by month, product type, cost, purchase address, etc. Setup! Github source code & data: https://github.com/KeithGalli/Pandas-... Installing Jupyter Notebook: https://jupyter.readthedocs.io/en/lat... Installing Pandas library: https://pandas.pydata.org/pandas-docs... Check out the first video I did on Pandas:    • Complete Python Pandas Data Science Tutori...   Check out the videos I did on Matplotlib:    • Intro to Data Visualization in Python with...      • Python Plotting Tutorial w/ Matplotlib & P...   Detailed video description! (timeline can be found in comments) We start by cleaning our data. Tasks during this section include: Drop NaN values from DataFrame Removing rows based on a condition Change the type of columns (to_numeric, to_datetime, astype) Once we have cleaned up our data a bit, we move the data exploration section. In this section we explore 5 high level business questions related to our data: What was the best month for sales? How much was earned that month? What city sold the most product? What time should we display advertisemens to maximize the likelihood of customer’s buying product? What products are most often sold together? What product sold the most? Why do you think it sold the most? To answer these questions we walk through many different pandas & matplotlib methods. They include: Concatenating multiple csvs together to create a new DataFrame (pd.concat) Adding columns Parsing cells as strings to make new columns (.str) Using the .apply() method Using groupby to perform aggregate analysis Plotting bar charts and lines graphs to visualize our results Labeling our graphs If you enjoy this video, make sure to leave it a like and subscribe to not miss any future similar tutorials :). Check out the new "solving real world data science tasks" video I posted!    • Solving real world data science tasks with...   --------------------------------------------- Follow me on social media! Instagram |   / keithgalli   Twitter |   / keithgalli   --------------------------------------------- Video Timeline! 0:00 - Intro 1:22 - Downloading the Data 2:57 - Getting started with the code (Jupyter Notebook) Task #1: Merging 12 csvs into a single dataframe (3:35) 4:25 - Read single CSV file 5:44 - List all files in a directory 7:06 - Concatenating files 11:00 - Reading in Updated dataframe Task #2: Add a Month column (12:48) 14:12 - Parse string in Pandas cell (.str) Cleaning our data! 17:31 - Drop NaN values from df 21:25 - Remove rows based on condition Task #3: Add a sales column (24:58) 25:58 - Another way to convert a column to numeric (ints & floats) Question #1: What was the best month for sales? (29:20) 30:35 - Visualizing our results with bar chart in matplotlib Question #2: What city sold the most product? (34:17) 35:32 - Add a city column 36:10 - Using the .apply() method (super useful!!) 40:35 - Why do we use the lambda x ? 40:57 - Dropping a column 46:45 - Answering the question (using groupby) 47:34 - Plotting our results Question #3: What time should we display advertisements to maximize the likelihood of purchases? (52:13) 53:16 - Using to_datetime() method 56:01 - Creating hour & minute columns 58:17 - Matplotlib line graph to plot our results 1:00:15 - Interpreting our results Question #4: What products are most often sold together? (1:02:17) 1:03:31 - Finding duplicate values in our DataFrame 1:05:43 - Use transform() method to join values from two rows into a single row 1:08:00 - Dropping rows with duplicate values 1:09:39 - Counting pairs of products (itertools, collections) Question #5: What product sold the most? Why do you think it did? (1:14:04) 1:15:28 - Graphing data 1:18:41 - Overlaying a second Y-axis on existing chart 1:23:41 - Interpreting our results --------------------- If you are curious to learn how I make my tutorials, check out this video:    • How to Make a High Quality Tutorial Video!...   Join the Python Army to get access to perks! YouTube -    / @keithgalli   Patreon -   / keithgalli   *I use affiliate links on the products that I recommend. I may earn a purchase commission or a referral bonus from the usage of these links.

Comments
  • Complete Python Pandas Data Science Tutorial! (2025 Updated Edition) 11 months ago
    Complete Python Pandas Data Science Tutorial! (2025 Updated Edition)
    Опубликовано: 11 months ago
    336858
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19543082
  • 5 Jupyter Notebook Tips & Tricks to Improve your Data Science Workflow! 2 years ago
    5 Jupyter Notebook Tips & Tricks to Improve your Data Science Workflow!
    Опубликовано: 2 years ago
    63953
  • SQL interview questions and answers | Entry level data analyst interview 3 years ago
    SQL interview questions and answers | Entry level data analyst interview
    Опубликовано: 3 years ago
    116734
  • 5 Python Libraries You Should Know in 2025! 6 months ago
    5 Python Libraries You Should Know in 2025!
    Опубликовано: 6 months ago
    105579
  • МАШИННОЕ ОБУЧЕНИЕ - ВСЕ ЧТО НУЖНО ЗНАТЬ 2 months ago
    МАШИННОЕ ОБУЧЕНИЕ - ВСЕ ЧТО НУЖНО ЗНАТЬ
    Опубликовано: 2 months ago
    31031
  • Лучшая ОБЩАГА: как живут студенты Бауманки! 2 days ago
    Лучшая ОБЩАГА: как живут студенты Бауманки!
    Опубликовано: 2 days ago
    244553
  • How to use Microsoft Power Query 4 years ago
    How to use Microsoft Power Query
    Опубликовано: 4 years ago
    2589404
  • #Day 9 |  SQL DBMS Interview Questions | #sql #select #column | in Hindi 2 weeks ago
    #Day 9 | SQL DBMS Interview Questions | #sql #select #column | in Hindi
    Опубликовано: 2 weeks ago
    225
  • Merging DataFrames in Pandas | Python Pandas Tutorials 2 years ago
    Merging DataFrames in Pandas | Python Pandas Tutorials
    Опубликовано: 2 years ago
    147958

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS