У нас вы можете посмотреть бесплатно Machine Learning in Production - Roman Kazinnik | Stanford MLSys #66 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Episode 66 of the Stanford MLSys Seminar Series! Machine Learning in Production: Review of Empirical Solutions Speaker: Roman Kazinnik Abstract: Taking stock of ML Infra problems with potential to benefit from systematic analysis. ML currently requires running large amounts experiments to compensate for the lack of analysis. Modern AI infrastructure (major clouds) is efficient in creating, training, and deploying thousands of model. At the same time, improving production models performance, accurate estimation of models performance in production, web data relevance, risk mitigation - these are ad hoc and experiment-driven processes. Analytical analysis for Production [distributed, large-scale, rapidly changing environment] ML can help to direct and hopefully replace the empirical and manual processes. Bio: Roman Kazinnik is working at Meta on the AI Platform team. He is an experienced computer programmer passionate about empirical and theoretical work. He created algorithms for Ads serving, deep Earth oil exploration wavefield model training, progressive image streaming, stock portfolio optimization. He is a recipient of the best paper award of the European Assoc. of Computer Graphics, and he did his Master's at Technion and Ph.D. at Tel Aviv University, Israel. -- Stanford MLSys Seminar hosts: Dan Fu, Karan Goel, Fiodar Kazhamiaka, and Piero Molino Executive Producers: Matei Zaharia, Chris Ré Twitter: / realdanfu / krandiash / w4nderlus7 -- Check out our website for the schedule: http://mlsys.stanford.edu Join our mailing list to get weekly updates: https://groups.google.com/forum/#!for... #machinelearning #ai #artificialintelligence #systems #mlsys #computerscience #stanford #meta