У нас вы можете посмотреть бесплатно Kubeflow vs MLFlow или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Started by Google a couple of years ago, Kubeflow is by design an end-to-end MLOps platform for AI at scale. Canonical has its own distribution, Charmed Kubeflow addresses the entire machine-learning lifecycle. It is, in fact, a suite of tools, such as Notebooks for training, Pipeline for automation, Katib for hyperparameter tuning or KServe for model serving, and more. Charmed Kubeflow benefits from a wide range of integrations with other tools such as MLFlow, Spark, Grafana, and Prometheus. MLFLow, on the other hand, celebrated last year 10 million downloads, being a very popular solution when it comes to machine learning. Started initially with a core function, the tool has nowadays four conceptions that include model registry or experiment tracking. So, which one should you choose for Machine Learning Operations? Kubeflow vs MLFLow is a panel discussion with Maciej Mazur - AI/ML Principal Engineer at Canonical, Kimonas Sotirchos - Kubeflow Community Working Group Lead and Engineering Manager at Canonical about: Production-grade MLOps Open-source MLOps Community-driven ML tooling Kubeflow vs MLFlow; Pros and Cons