• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

How Does Spark Handle Out-of-Memory Errors with Cached Data? скачать в хорошем качестве

How Does Spark Handle Out-of-Memory Errors with Cached Data? 1 месяц назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How Does Spark Handle Out-of-Memory Errors with Cached Data?
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: How Does Spark Handle Out-of-Memory Errors with Cached Data? в качестве 4k

У нас вы можете посмотреть бесплатно How Does Spark Handle Out-of-Memory Errors with Cached Data? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон How Does Spark Handle Out-of-Memory Errors with Cached Data? в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



How Does Spark Handle Out-of-Memory Errors with Cached Data?

Discover how Apache Spark manages out-of-memory (OOM) errors when cached data exceeds memory limits and explore different persistence options available for efficient data handling. --- This video is based on the question https://stackoverflow.com/q/63572210/ asked by the user 'Santhosh reddy' ( https://stackoverflow.com/u/14158600/ ) and on the answer https://stackoverflow.com/a/63572810/ provided by the user 'kavetiraviteja' ( https://stackoverflow.com/u/3475488/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions. Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: how spark handles out of memory error when cached( MEMORY_ONLY persistence) data does not fit in memory? Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l... The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license. If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com. --- How Does Spark Handle Out-of-Memory Errors with Cached Data? Apache Spark has gained immense popularity for processing large datasets efficiently. However, as you delve into the nuances of Spark, you may find yourself asking: What happens when cached data does not fit in memory? This is a common query for new users who may not yet understand how Spark deals with out-of-memory (OOM) errors. The Problem of Memory Limits in Spark When you’re working with Spark, you typically want to cache your data to improve performance. However, if the data you are trying to cache exceeds the available memory, it can lead to OOM errors. This not only raises the question of how Spark handles caching but also what strategies can be employed to mitigate such issues. How Caching Works In Spark, you can cache data using the MEMORY_ONLY persistence level, which stores RDD (Resilient Distributed Dataset) partitions in memory as deserialized Java objects. But what happens when the data doesn't fit? Not all partitions are cached: If your RDD has multiple partitions (e.g., 500) and some of them (e.g., 200) cannot fit into memory, those partitions won’t be cached and will need to be recomputed every time they are accessed. Recomputations can still lead to OOM errors: Even after the recomputation, if you attempt to fit those RDDs back into memory without adequate space, the garbage collector will kick in. If it fails to reclaim enough memory, an OOM error will occur. So, despite the caching mechanisms, OOM errors can still happen when the memory is insufficient. Solutions for Handling Memory Management To help prevent or manage OOM errors when working with Spark, it’s essential to understand various persistence options available, each designed to manage memory usage differently. Persistence Levels Explained Persist (MEMORY_ONLY) Description: Caches objects as deserialized Java objects in memory. Limitation: Once the data exceeds memory limits, some partitions will be unrecoverable and recomputed, causing potential OOM errors. Persist (MEMORY_AND_DISK) Description: Caches data in memory but spills to disk when memory is insufficient. Benefits: Useful for larger datasets; however, ensure ample disk space to avoid errors. Persist (MEMORY_ONLY_SER) Description: Caches data as serialized Java objects, which reduces space usage but is CPU intensive. Consideration: Even though it saves space, it can still encounter OOM issues like MEMORY_ONLY. Persist (MEMORY_AND_DISK_SER) Description: Similar to MEMORY_ONLY_SER, but also spills to disk if memory is full. Suggestion: Optimizes disk usage and is effective when memory is constrained. Persist (DISK_ONLY) Description: Stores RDDs entirely on disk. Caution: Causes significant I/O overhead; not recommended for frequently used data frames. Persist (MEMORY_ONLY_2 or MEMORY_AND_DISK_2) Description: These options replicate data on two nodes for redundancy. Use Case: Suitable for scenarios involving spot instances. Persist (OFF_HEAP) Description: Leverages off-heap memory for caching RDDs, which is beneficial for managing buffer space and thread stacks. Conclusion Understanding how Spark handles out-of-memory errors with cached data is crucial for optimizing performance. By choosing the right persistence level and ensuring adequate resources, you can mitigate risks associated with memory management and improve the reliability of your Spark applications. The choice of persistence storage can significantly impact your Spark performance and error management, so always consider the best strategy for your data needs!

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5