У нас вы можете посмотреть бесплатно 251102- Apple AI测评:端侧计算新范式 | Apple AI Review: New Paradigm of On-Device Computing или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
1. 公司基本背景 / Company Background 1.1. Apple在2024财年总收入达391亿美元,2025年Q4创纪录达到102亿美元。 1.1. Apple achieved $391 billion in total revenue for fiscal year 2024, with Q4 2025 reaching a record $102 billion. 1.2. Apple在2024年市值突破3万亿美元,成为全球首家达到此里程碑的公司。 1.2. Apple's market valuation surpassed $3 trillion in 2024, becoming the first company globally to reach this milestone. 1.3. 全球约有23.5亿台活跃的Apple设备,iPhone全球市场份额达17%。 1.3. Approximately 2.35 billion active Apple devices worldwide, with iPhone holding a 17% global market share. 2. 核心AI产品主要功能 / Core AI Product Functions 2.1. M系列和A系列芯片支持端侧AI计算,M5采用第三代3纳米工艺,neural engine达到40-50 TOPS。 2.1. M-series and A-series chips support on-device AI computing, with M5 using 3rd generation 3nm process and neural engine reaching 40-50 TOPS. 2.2. Apple Intelligence提供系统级写作辅助、智能通知管理、图像生成和Siri 2.0等功能,完全离线运行。 2.2. Apple Intelligence offers system-wide writing assistance, intelligent notification management, image generation, and Siri 2.0, all running completely offline. 2.3. Private Cloud Compute实现端云混合架构,数据端到端加密,无日志记录。 2.3. Private Cloud Compute enables hybrid on-device and cloud architecture with end-to-end encryption and no logging. 3. 核心技术 / Core Technologies 3.1. 统一内存架构UMA使CPU、GPU和neural engine共享单一内存池,M5达到32GB容量。 3.1. Unified Memory Architecture (UMA) enables CPU, GPU, and neural engine to share a single memory pool, with M5 reaching 32GB capacity. 3.2. GPU neural accelerator首次在M5的每个GPU核心内置,大幅提升机器学习吞吐量。 3.2. GPU neural accelerator is embedded in each GPU core for the first time in M5, significantly boosting machine learning throughput. 3.3. 采用2 bit量化训练技术,配合KV cache共享,极致压缩模型体积。 3.3. Employs 2-bit quantization training technology with KV cache sharing for extreme model compression. 4. 产品优点 / Product Strengths 4.1. 端侧AI处理保护用户隐私,数据不需要上传到远程服务器。 4.1. On-device AI processing protects user privacy as data doesn't need to be uploaded to remote servers. 4.2. 硬件软件一体化设计,M系列和A系列芯片与Apple Intelligence深度整合。 4.2. Integrated hardware-software design with deep integration between M/A-series chips and Apple Intelligence. 4.3. 统一架构使开发者编写的应用可以无缝运行在iPhone、iPad、Mac等多设备上。 4.3. Unified architecture enables developer applications to run seamlessly across iPhone, iPad, Mac, and other devices. 4.4. Private Cloud Compute提供独立安全审计,最高100万美元漏洞赏金计划。 4.4. Private Cloud Compute offers independent security audits with bug bounty program up to $1 million. 5. 产品缺点 / Product Limitations 5.1. Apple Intelligence初期功能有限,2024年第四季度导致iPhone 16系列销量低于预期。 5.1. Apple Intelligence had limited initial functionality, causing iPhone 16 series sales to fall below expectations in Q4 2024. 5.2. 自建云端AI基础设施成本极高,可能影响长期盈利能力。 5.2. Self-built cloud AI infrastructure is extremely costly, potentially affecting long-term profitability. 5.3. 虽然声称PCC无日志记录,但用户无法直接验证透明度。 5.3. Although claiming PCC has no logging, users cannot directly verify transparency. 6. 与竞品对比 / Competitor Comparison 6.1. 芯片方面,Apple M5和A19 Pro的主要竞品是Qualcomm Snapdragon 8 Elite和MediaTek Dimensity 9400。 6.1. For chips, Apple M5 and A19 Pro compete mainly with Qualcomm Snapdragon 8 Elite and MediaTek Dimensity 9400. 6.2. 系统方面,Apple Intelligence的竞品包括Google Gemini、Samsung Galaxy AI和Microsoft Copilot。 6.2. For systems, Apple Intelligence competes with Google Gemini, Samsung Galaxy AI, and Microsoft Copilot. 6.3. Private Cloud Compute解决了云端AI隐私痛点,Google和Microsoft无法在短期内复制这套架构。 6.3. Private Cloud Compute solves cloud AI privacy concerns, which Google and Microsoft cannot replicate in the short term.