• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Multiagent Reinforcement Learning: Rollout and Policy Iteration скачать в хорошем качестве

Multiagent Reinforcement Learning: Rollout and Policy Iteration 5 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Multiagent Reinforcement Learning: Rollout and Policy Iteration
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Multiagent Reinforcement Learning: Rollout and Policy Iteration в качестве 4k

У нас вы можете посмотреть бесплатно Multiagent Reinforcement Learning: Rollout and Policy Iteration или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Multiagent Reinforcement Learning: Rollout and Policy Iteration в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Multiagent Reinforcement Learning: Rollout and Policy Iteration

To download the slides in .pdf and the associated research papers, link to the author's web site: http://web.mit.edu/dimitrib/www/RLboo... We focus on rollout and policy iteration (PI) methods for problems where the control consists of multiple components each selected (conceptually) by a separate agent. Based on a problem reformulation that trades off control space complexity with state space complexity, we develop an approach, whereby at every stage, the agents sequentially (one-at-a-time) execute a local rollout algorithm that uses a base policy, together with some coordinating information from the other agents. The amount of total computation required at every stage grows linearly with the number of agents. By contrast, in the standard rollout algorithm, the amount of total computation grows exponentially with the number of agents. Despite the dramatic reduction in required computation, we show that our multiagent rollout algorithm has the fundamental cost improvement property of standard rollout: it guarantees an improved performance relative to the base policy. We also discuss autonomous multiagent rollout schemes that allow the agents to make decisions autonomously through the use of precomputed signaling information, which is sufficient to maintain the cost improvement property, without any on-line coordination of control selection between the agents. We also consider exact and approximate PI algorithms involving a new type of one-agent-at-a-time policy improvement operation. For one of our PI algorithms, we prove convergence to an agent-by-agent optimal policy, thus establishing a connection with the theory of teams. For another PI algorithm, which is executed over a more complex state space, we prove convergence to an optimal policy. Approximate forms of these algorithms are also given, based on the use of policy and value neural networks. These PI algorithms, in both their exact and their approximate form are strictly off-line methods, but they can be used to provide a base policy for use in an on-line multiagent rollout scheme. The material of this lecture is in part contained in the author's recent book Rollout, Policy Iteration, and Distributed Reinforcement, Athena Scientific, 2020 See http://web.mit.edu/dimitrib/www/dp_ro...

Comments
  • Multiagent Reinforcement Learning: Rollout and Policy Iteration 5 лет назад
    Multiagent Reinforcement Learning: Rollout and Policy Iteration
    Опубликовано: 5 лет назад
  • Introduction to Multi-Agent Reinforcement Learning 3 года назад
    Introduction to Multi-Agent Reinforcement Learning
    Опубликовано: 3 года назад
  • Plenary lecture at IFAC Nonlinear MPC, 2024; Model Predictive Control and Reinforcement Learning 1 год назад
    Plenary lecture at IFAC Nonlinear MPC, 2024; Model Predictive Control and Reinforcement Learning
    Опубликовано: 1 год назад
  • Counterfactual Multi-Agent Policy Gradients 8 лет назад
    Counterfactual Multi-Agent Policy Gradients
    Опубликовано: 8 лет назад
  • Dimitri Bertsekas: 5 лет назад
    Dimitri Bertsekas: "Distributed and Multiagent Reinforcement Learning"
    Опубликовано: 5 лет назад
  • MIT Lecture, Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive Control , Oct 2022 3 года назад
    MIT Lecture, Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive Control , Oct 2022
    Опубликовано: 3 года назад
  • Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning 1 год назад
    Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning
    Опубликовано: 1 год назад
  • Reinforcement Learning, Model Predictive Control, and the Newton Step for Solving Bellman's Equation 7 месяцев назад
    Reinforcement Learning, Model Predictive Control, and the Newton Step for Solving Bellman's Equation
    Опубликовано: 7 месяцев назад
  • AlphaStar: Grandmaster level in StarCraft II using multi-agent reinforcement learning 6 лет назад
    AlphaStar: Grandmaster level in StarCraft II using multi-agent reinforcement learning
    Опубликовано: 6 лет назад
  • Computer chess with model predictive control and reinforcement learning 1 год назад
    Computer chess with model predictive control and reinforcement learning
    Опубликовано: 1 год назад
  • Scientists Trapped 1000 AIs in Minecraft 17 часов назад
    Scientists Trapped 1000 AIs in Minecraft
    Опубликовано: 17 часов назад
  • Learning to Communicate with Deep Multi-Agent Reinforcement Learning - Jakob Foerster 6 лет назад
    Learning to Communicate with Deep Multi-Agent Reinforcement Learning - Jakob Foerster
    Опубликовано: 6 лет назад
  • John Tsitsiklis -- Reinforcement Learning 6 лет назад
    John Tsitsiklis -- Reinforcement Learning
    Опубликовано: 6 лет назад
  • Factored Value Functions for Cooperative Multi-Agent Reinforcement Learning 5 лет назад
    Factored Value Functions for Cooperative Multi-Agent Reinforcement Learning
    Опубликовано: 5 лет назад
  • 4 года назад
    "Learning to Communicate in Multi-Agent Systems" - Amanda Prorok
    Опубликовано: 4 года назад
  • Deep Reinforcement Learning for Multi-Agent Interaction - Stefano Albrecht 4 года назад
    Deep Reinforcement Learning for Multi-Agent Interaction - Stefano Albrecht
    Опубликовано: 4 года назад
  • Jonathan Mugan:  RLlib, a Python Library for Deep Hierarchical Multi-Agent Reinforcement Learning 3 года назад
    Jonathan Mugan: RLlib, a Python Library for Deep Hierarchical Multi-Agent Reinforcement Learning
    Опубликовано: 3 года назад
  • Lecture 1, 2025, Course overview: RL and DP, AlphaZero, deterministic DP, examples, applications 1 год назад
    Lecture 1, 2025, Course overview: RL and DP, AlphaZero, deterministic DP, examples, applications
    Опубликовано: 1 год назад
  • Model-free vs Model-based Reinforcement Learning -- Oriol Vinyals (11/10/2020) 5 лет назад
    Model-free vs Model-based Reinforcement Learning -- Oriol Vinyals (11/10/2020)
    Опубликовано: 5 лет назад
  • The Extraction Game | A Multi-Agent Reinforcement Learning Approach 4 года назад
    The Extraction Game | A Multi-Agent Reinforcement Learning Approach
    Опубликовано: 4 года назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5