У нас вы можете посмотреть бесплатно Materialized Views: Tips, Tricks, and Use Cases или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Materialized views are one of StarRocks’ most popular and powerful features, but are you getting the most out of them? Murphy Wang, the technical mind behind the project’s materialized views, is ready to share all the latest tips and tricks to help you get the best query performance for your data pipeline. Session Highlights: 🌟Best practices for rolling out materialized views: Learn what causes slow queries and how StarRocks offers the most optimal solution. 🌟Actionable use cases: Explore a variety of use cases where materialized views excel, from accelerating data lake analytics to optimizing complex BI queries. 🌟Materialized view tips and tricks: Dive into the fundamentals of setting up and managing materialized views, and the steps you should take to get the most out of them. ---------------------------------------------------------------------------------------------------------------------- Timestamps 00:00 Intro and Agenda 00:57 What Specific Challenges Do Materialized Views Address for Data Pipelines in Data Lakes? 01:59 What Is a Materialized View and What Are the Advantages? 02:39 How Can Materialized Views Simplify Lakehouse Data Pipelines? 03:23 How Can Materialized Views Enable Seamless BI Acceleration 04:53 TPC-H Benchmark as an Example 05:50 Materialized Views: Real-World Use Cases 05:55 Aggregation Layer - Customer: podcast web application; Use Case: daily dashboard for tiered downloads bandwidth 07:27 Real-time Dashboard Customer: Didi (ride-sharing); high concurrency real-time analytics supporting hundreds of concurrent users querying billions of records daily. 09:36 Dashboard - Trino Replacement Customer: Gaming Company; Issues: slow query performance and pipeline complexity 11:17 BI Platform Customer: Trip.com; Issues: slow query performance and complex BI queries 13:13 Metric Layer Customer: Financial Institution; Cube replacement 14:29 How to Use Materialized Views 14:36 Materialized Views Storage 15:35 Materialized Views SQL 16:31 Materialized Views Refresh Task 17:47 Partitioning 21:06 Partitioning: Refresh 22:35 Schema Change 24:08 Operations 26:30 Auto-Rewrite Query to Materialized Views 30:09 Auto-Rewrite: Dimension Modeling 31:48 Auto-Rewrite: View Modeling 33:05 Auto-Rewrite: Union Rewrite 33:48 Auto MV (Only Available in CelerData Cloud Version) ---------------------------------------------------------------------------------------------------------------------- Learn more at https://starrocks.com/ Connect with us: LinkedIn: / celerdata Twitter: / celerdata CelerData Website: https://celerdata.com/ StarRocks GitHub: https://github.com/StarRocks/StarRocks StarRocks Website: https://www.starrocks.io/ Slack: https://try.starrocks.com/join-starro... #DataAnalytics #DataEngineering #DataLakeAnalytics #OLAP #DataAnalyst #DataEngineer #DataInfrastructure #UserFacingAnalytics #Database #AnalyticalDatabase #DataLake #DataLakeHouse #DataWarehouse #datasciencebasics