У нас вы можете посмотреть бесплатно CVC: Contrastive Learning for Non-parallel Voice Conversion - (3 minutes introduction) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Title: CVC: Contrastive Learning for Non-parallel Voice Conversion - (3 minutes introduction) Authors: Tingle Li (Tsinghua University, China), Yichen Liu (Tsinghua University, China), Chenxu Hu (Tsinghua University, China), Hang Zhao (Tsinghua University, China) Category: Voice Conversion and Adaptation I Abstract: Cycle consistent generative adversarial network (CycleGAN) and variational autoencoder (VAE) based models have gained popularity in non-parallel voice conversion recently. However, they often suffer from difficult training process and unsatisfactory results. In this paper, we propose a contrastive learning-based adversarial approach for voice conversion, namely contrastive voice conversion (CVC). Compared to previous CycleGAN-based methods, CVC only requires an efficient one-way GAN training by taking the advantage of contrastive learning. When it comes to non-parallel one-to-one voice conversion, CVC is on par or better than CycleGAN and VAE while effectively reducing training time. CVC further demonstrates superior performance in many-to-one voice conversion, enabling the conversion from unseen speakers. For more details and PDF version of the paper visit: https://www.isca-speech.org/archive/i... d01s31t01trim